Skip to main content
Erschienen in: International Journal of Steel Structures 4/2019

10.12.2018

A Linear Approach for Sizing Optimization of Isostatic Trussed Structures Subjected to External and Self-Weight Loads

verfasst von: Flavio Avila Correia Martins, Juan Pablo Julca Avila, Marcelo Araujo da Silva

Erschienen in: International Journal of Steel Structures | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The implementation of a new linear method to optimum weight design of trussed structures subjected to external and self-weight loads is proposed. Design variables are the cross-section areas of the members. Inequality constraints are written based on the force-method for isostatic structures considering maximum and minimum axial stress criteria. The novelty of the proposed approach is the benefit created from the combination of a linear inequality-constrained formulation with interior-point methods to tunnel the solution rapidly and monotonically towards the minimum value through feasible space, also eliminating the need to directly explore the finite-element model. To evaluate the performance of the algorithm, trusses are subject to optimization processes based on different techniques: (i) the proposed method, called by “indirect-method”; (ii) a design problem with constraint evaluated directly from the finite-element model; (iii) optimization based on Genetic Algorithms. The three methods are compared using trusses with 10, 37 and 1240 bar-elements. The results showed that the indirect-method was able to provide great performance for complex topologies, returning weight designs up to 70 times lighter in 1% of the time required by a Genetic Algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Al Rabadi, H. F. H. (2014). Truss size and topology optimization using harmony search method. The University of Iowa. Al Rabadi, H. F. H. (2014). Truss size and topology optimization using harmony search method. The University of Iowa.
Zurück zum Zitat Asl, R. N., Aslani, M., & Panahi, M. S. (2013) Sizing optimization of truss structures using a hybridized genetic algorithm. arXiv preprint arXiv:1306.1454 Asl, R. N., Aslani, M., & Panahi, M. S. (2013) Sizing optimization of truss structures using a hybridized genetic algorithm. arXiv preprint arXiv:​1306.​1454
Zurück zum Zitat Assimi, H., Jamali, A., & Nariman-zadeh, N. (2017). Sizing and topology optimization of truss structures using genetic programming. Swarm and Evolutionary Computation, 37, 90.CrossRef Assimi, H., Jamali, A., & Nariman-zadeh, N. (2017). Sizing and topology optimization of truss structures using genetic programming. Swarm and Evolutionary Computation, 37, 90.CrossRef
Zurück zum Zitat Banh, T. T., & Lee, D. (2018). Multi-material topology optimization design for continuum structures with crack patterns. Composite Structures, 186, 193.CrossRef Banh, T. T., & Lee, D. (2018). Multi-material topology optimization design for continuum structures with crack patterns. Composite Structures, 186, 193.CrossRef
Zurück zum Zitat Bendsøe, M. P., Ben-Tal, A., & Zowe, J. (1994). Optimization methods for truss geometry and topology design. Structural Optimization, 7(3), 141.CrossRef Bendsøe, M. P., Ben-Tal, A., & Zowe, J. (1994). Optimization methods for truss geometry and topology design. Structural Optimization, 7(3), 141.CrossRef
Zurück zum Zitat Bölte, A., & Thonemann, U. W. (1996). Optimizing simulated annealing schedules with genetic programming. European Journal of Operational Research, 92(2), 402.CrossRefMATH Bölte, A., & Thonemann, U. W. (1996). Optimizing simulated annealing schedules with genetic programming. European Journal of Operational Research, 92(2), 402.CrossRefMATH
Zurück zum Zitat Camp, C., & Farshchin, M. (2014). Design of space trusses using modified teaching–learning based optimization. Engineering Structures, 62, 87.CrossRef Camp, C., & Farshchin, M. (2014). Design of space trusses using modified teaching–learning based optimization. Engineering Structures, 62, 87.CrossRef
Zurück zum Zitat Cazacu, R., & Grama, L. (2014). Steel truss optimization using genetic algorithms and FEA. Procedia Technology, 12, 339.CrossRef Cazacu, R., & Grama, L. (2014). Steel truss optimization using genetic algorithms and FEA. Procedia Technology, 12, 339.CrossRef
Zurück zum Zitat de Almeida, F. S. (2016). Stacking sequence optimization for maximum buckling load of composite plates using harmony search algorithm. Composite Structures, 143, 287.CrossRef de Almeida, F. S. (2016). Stacking sequence optimization for maximum buckling load of composite plates using harmony search algorithm. Composite Structures, 143, 287.CrossRef
Zurück zum Zitat Dominguez, A., Stiharu, I., & Sedaghati, R. (2006). Practical design optimization of truss structures using the genetic algorithms. Research in Engineering Design, 17(2), 73.CrossRef Dominguez, A., Stiharu, I., & Sedaghati, R. (2006). Practical design optimization of truss structures using the genetic algorithms. Research in Engineering Design, 17(2), 73.CrossRef
Zurück zum Zitat Farshchin, M., Camp, C., & Maniat, M. (2016). Multi-class teaching–learning-based optimization for truss design with frequency constraints. Engineering Structures, 106, 355.CrossRef Farshchin, M., Camp, C., & Maniat, M. (2016). Multi-class teaching–learning-based optimization for truss design with frequency constraints. Engineering Structures, 106, 355.CrossRef
Zurück zum Zitat Farshi, B., & Alinia-Ziazi, A. (2010). Sizing optimization of truss structures by method of centers and force formulation. International Journal of Solids and Structures, 47(18–19), 2508.CrossRefMATH Farshi, B., & Alinia-Ziazi, A. (2010). Sizing optimization of truss structures by method of centers and force formulation. International Journal of Solids and Structures, 47(18–19), 2508.CrossRefMATH
Zurück zum Zitat Ferrier, G. D., & Lovell, C. K. (1990). Measuring cost efficiency in banking: Econometric and linear programming evidence. Journal of Econometrics, 46(1–2), 229.CrossRef Ferrier, G. D., & Lovell, C. K. (1990). Measuring cost efficiency in banking: Econometric and linear programming evidence. Journal of Econometrics, 46(1–2), 229.CrossRef
Zurück zum Zitat Frans, R., & Arfiadi, Y. (2014). Sizing, shape, and topology optimizations of roof trusses using hybrid genetic algorithms. Procedia Engineering, 95, 185.CrossRef Frans, R., & Arfiadi, Y. (2014). Sizing, shape, and topology optimizations of roof trusses using hybrid genetic algorithms. Procedia Engineering, 95, 185.CrossRef
Zurück zum Zitat Gan, B. S., Hara, T., Han, A., Alisjahbana, S. W., & Asad, S. (2017). Evolutionary ACO algorithms for truss optimization problems. Procedia Engineering, 171, 1100.CrossRef Gan, B. S., Hara, T., Han, A., Alisjahbana, S. W., & Asad, S. (2017). Evolutionary ACO algorithms for truss optimization problems. Procedia Engineering, 171, 1100.CrossRef
Zurück zum Zitat Gomes, H. M. (2011). Truss optimization with dynamic constraints using a particle swarm algorithm. Expert Systems with Applications, 38(1), 957.CrossRef Gomes, H. M. (2011). Truss optimization with dynamic constraints using a particle swarm algorithm. Expert Systems with Applications, 38(1), 957.CrossRef
Zurück zum Zitat Hultman, M. (2010). Weight optimization of steel trusses by a genetic algorithm-size, shape and topology optimization according to Eurocode. TVBK-5176 Hultman, M. (2010). Weight optimization of steel trusses by a genetic algorithm-size, shape and topology optimization according to Eurocode. TVBK-5176
Zurück zum Zitat Kaveh, A., & Khayatazad, M. (2013). Ray optimization for size and shape optimization of truss structures. Computers & Structures, 117, 82.CrossRef Kaveh, A., & Khayatazad, M. (2013). Ray optimization for size and shape optimization of truss structures. Computers & Structures, 117, 82.CrossRef
Zurück zum Zitat Kaveh, A., & Rahami, H. (2006). Analysis, design and optimization of structures using force method and genetic algorithm. International Journal for Numerical Methods in Engineering, 65(10), 1570.CrossRefMATH Kaveh, A., & Rahami, H. (2006). Analysis, design and optimization of structures using force method and genetic algorithm. International Journal for Numerical Methods in Engineering, 65(10), 1570.CrossRefMATH
Zurück zum Zitat Koski, J. (1981). Multicriterion optimization in structural design. Technical report. Tampere University of Technology, Finland. Koski, J. (1981). Multicriterion optimization in structural design. Technical report. Tampere University of Technology, Finland.
Zurück zum Zitat Kripka, M. (2004). Discrete optimization of trusses by simulated annealing. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26(2), 170.CrossRef Kripka, M. (2004). Discrete optimization of trusses by simulated annealing. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26(2), 170.CrossRef
Zurück zum Zitat Lamberti, L., & Pappalettere, C. (2003). Move limits definition in structural optimization with sequential linear programming. Part II: Numerical examples. Computers & Structures, 81(4), 215.MathSciNetCrossRef Lamberti, L., & Pappalettere, C. (2003). Move limits definition in structural optimization with sequential linear programming. Part II: Numerical examples. Computers & Structures, 81(4), 215.MathSciNetCrossRef
Zurück zum Zitat Lustig, I. J., Marsten, R. E., & Shanno, D. F. (1994). Interior point methods for linear programming: Computational state of the art. ORSA Journal on Computing, 6(1), 1.MathSciNetCrossRefMATH Lustig, I. J., Marsten, R. E., & Shanno, D. F. (1994). Interior point methods for linear programming: Computational state of the art. ORSA Journal on Computing, 6(1), 1.MathSciNetCrossRefMATH
Zurück zum Zitat Lyamin, A. V., & Sloan, S. (2002). Upper bound limit analysis using linear finite elements and non-linear programming. International Journal for Numerical and Analytical Methods in Geomechanics, 26(2), 181.CrossRefMATH Lyamin, A. V., & Sloan, S. (2002). Upper bound limit analysis using linear finite elements and non-linear programming. International Journal for Numerical and Analytical Methods in Geomechanics, 26(2), 181.CrossRefMATH
Zurück zum Zitat Miguel, L. F. F., & Miguel, L. F. F. (2012). Shape and size optimization of truss structures considering dynamic constraints through modern metaheuristic algorithms. Expert Systems with Applications, 39(10), 9458.CrossRef Miguel, L. F. F., & Miguel, L. F. F. (2012). Shape and size optimization of truss structures considering dynamic constraints through modern metaheuristic algorithms. Expert Systems with Applications, 39(10), 9458.CrossRef
Zurück zum Zitat Mohr, D. P., Stein, I., Matzies, T., & Knapek, C. A. (2011). Robust topology optimization of Truss with regard to volume. arXiv preprint arXiv:1109.3782 Mohr, D. P., Stein, I., Matzies, T., & Knapek, C. A. (2011). Robust topology optimization of Truss with regard to volume. arXiv preprint arXiv:​1109.​3782
Zurück zum Zitat Mortazavi, A., & Toğan, V. (2017). Sizing and layout design of truss structures under dynamic and static constraints with an integrated particle swarm optimization algorithm. Applied Soft Computing, 51, 239.CrossRef Mortazavi, A., & Toğan, V. (2017). Sizing and layout design of truss structures under dynamic and static constraints with an integrated particle swarm optimization algorithm. Applied Soft Computing, 51, 239.CrossRef
Zurück zum Zitat Potra, F. A., & Wright, S. J. (2000). Interior-point methods. Journal of Computational and Applied Mathematics, 124(1–2), 281.MathSciNetCrossRefMATH Potra, F. A., & Wright, S. J. (2000). Interior-point methods. Journal of Computational and Applied Mathematics, 124(1–2), 281.MathSciNetCrossRefMATH
Zurück zum Zitat Rajan, S. (1995). Sizing, shape, and topology design optimization of trusses using genetic algorithm. Journal of Structural Engineering, 121(10), 1480.CrossRef Rajan, S. (1995). Sizing, shape, and topology design optimization of trusses using genetic algorithm. Journal of Structural Engineering, 121(10), 1480.CrossRef
Zurück zum Zitat Ringertz, U. T. (1985). On topology optimization of trusses. Engineering optimization, 9(3), 209.CrossRef Ringertz, U. T. (1985). On topology optimization of trusses. Engineering optimization, 9(3), 209.CrossRef
Zurück zum Zitat Sivanandam, S., & Deepa, S. (2008). Introduction to genetic algorithms (pp. 165–209). Berlin: Springer.CrossRefMATH Sivanandam, S., & Deepa, S. (2008). Introduction to genetic algorithms (pp. 165–209). Berlin: Springer.CrossRefMATH
Zurück zum Zitat Stolpe, M. (2016). Truss optimization with discrete design variables: A critical review. Structural and Multidisciplinary Optimization, 53(2), 349.MathSciNetCrossRef Stolpe, M. (2016). Truss optimization with discrete design variables: A critical review. Structural and Multidisciplinary Optimization, 53(2), 349.MathSciNetCrossRef
Zurück zum Zitat Tejani, G. G., Savsani, V. J., Patel, V. K., & Savsani, P. V. (2017). Size, shape, and topology optimization of planar and space trusses using mutation-based improved metaheuristics. Journal of Computational Design and Engineering, 5, 198–214.CrossRef Tejani, G. G., Savsani, V. J., Patel, V. K., & Savsani, P. V. (2017). Size, shape, and topology optimization of planar and space trusses using mutation-based improved metaheuristics. Journal of Computational Design and Engineering, 5, 198–214.CrossRef
Zurück zum Zitat Wang, D., Zhang, W., & Jiang, J. (2002). Truss shape optimization with multiple displacement constraints. Computer Methods in Applied Mechanics and Engineering, 191(33), 3597.CrossRefMATH Wang, D., Zhang, W., & Jiang, J. (2002). Truss shape optimization with multiple displacement constraints. Computer Methods in Applied Mechanics and Engineering, 191(33), 3597.CrossRefMATH
Zurück zum Zitat Wang, D., Zhang, W., & Jiang, J. (2004). Truss optimization on shape and sizing with frequency constraints. AIAA Journal, 42(3), 622.CrossRef Wang, D., Zhang, W., & Jiang, J. (2004). Truss optimization on shape and sizing with frequency constraints. AIAA Journal, 42(3), 622.CrossRef
Metadaten
Titel
A Linear Approach for Sizing Optimization of Isostatic Trussed Structures Subjected to External and Self-Weight Loads
verfasst von
Flavio Avila Correia Martins
Juan Pablo Julca Avila
Marcelo Araujo da Silva
Publikationsdatum
10.12.2018
Verlag
Korean Society of Steel Construction
Erschienen in
International Journal of Steel Structures / Ausgabe 4/2019
Print ISSN: 1598-2351
Elektronische ISSN: 2093-6311
DOI
https://doi.org/10.1007/s13296-018-0194-8

Weitere Artikel der Ausgabe 4/2019

International Journal of Steel Structures 4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.