Skip to main content
Erschienen in: Journal of Scientific Computing 3/2021

01.03.2021

A Local Radial Basis Function Method for the Laplace–Beltrami Operator

verfasst von: Diego Álvarez, Pedro González-Rodríguez, Manuel Kindelan

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We introduce a new local meshfree method for the approximation of the Laplace–Beltrami operator on a smooth surface in \({\mathbb {R}}^3\). It is a direct method that uses radial basis functions augmented with multivariate polynomials. A key element of this method is that it does not need an explicit expression of the surface, which can be simply defined by a set of scattered nodes. Likewise, it does not require expressions for the surface normal vectors or for the curvature of the surface, which are approximated using explicit formulas derived in the paper. An additional advantage is that it is a local method and, hence, the matrix that approximates the Laplace–Beltrami operator is sparse, which translates into good scalability properties. The convergence, accuracy and other computational characteristics of the proposed method are studied numerically. Its performance is shown by solving two reaction–diffusion partial differential equations on surfaces; the Turing model for pattern formation, and the Schaeffer’s model for electrical cardiac tissue behavior.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alvarez, D., Alonso-Atienza, F., Rojo-Alvarez, J.L., Garcia-Alberola, A., Moscoso, M.: Shape reconstruction of cardiac ischemia from non-contact intracardiac recordings: a model study. Math. Comput. Model. 55, 1770–1781 (2012)MathSciNetCrossRef Alvarez, D., Alonso-Atienza, F., Rojo-Alvarez, J.L., Garcia-Alberola, A., Moscoso, M.: Shape reconstruction of cardiac ischemia from non-contact intracardiac recordings: a model study. Math. Comput. Model. 55, 1770–1781 (2012)MathSciNetCrossRef
2.
Zurück zum Zitat Alvarez, D., Gonzalez-Rodriguez, P., Moscoso, M.: A closed-form formula for the RBF-based approximation of the Laplace–Beltrami operator. J. Sci. Comput. 77, 1115 (2018)MathSciNetCrossRef Alvarez, D., Gonzalez-Rodriguez, P., Moscoso, M.: A closed-form formula for the RBF-based approximation of the Laplace–Beltrami operator. J. Sci. Comput. 77, 1115 (2018)MathSciNetCrossRef
3.
Zurück zum Zitat Barnett, G.A.: A Robust RBF-FD Formulation Based on Polyharmonic Splines and Polynomials. Ph.d. thesis, University of Colorado, Boulder (2015) Barnett, G.A.: A Robust RBF-FD Formulation Based on Polyharmonic Splines and Polynomials. Ph.d. thesis, University of Colorado, Boulder (2015)
4.
Zurück zum Zitat Bayona, V., Flyer, N., Fornberg, B.: On the role of polynomials in rbf-fd approximations: III behavior near domain boundaries. J. Comput. Phys. 380, 378–399 (2019)MathSciNetCrossRef Bayona, V., Flyer, N., Fornberg, B.: On the role of polynomials in rbf-fd approximations: III behavior near domain boundaries. J. Comput. Phys. 380, 378–399 (2019)MathSciNetCrossRef
5.
Zurück zum Zitat Bayona, V.: An insight into RBF-FD approximations augmented with polynomials. Comput. Math. Appl. 77, 2337–2353 (2019)MathSciNetCrossRef Bayona, V.: An insight into RBF-FD approximations augmented with polynomials. Comput. Math. Appl. 77, 2337–2353 (2019)MathSciNetCrossRef
6.
Zurück zum Zitat Barreira, R., Elliott, C.M., Madzvamuse, A.: The surface finite element method for pattern formation on evolving biological surfaces. J. Math. Biol. 63, 1095–1119 (2011)MathSciNetCrossRef Barreira, R., Elliott, C.M., Madzvamuse, A.: The surface finite element method for pattern formation on evolving biological surfaces. J. Math. Biol. 63, 1095–1119 (2011)MathSciNetCrossRef
7.
Zurück zum Zitat Bertalmio, M., Cheng, L.-T., Osher, S., Sapiro, G.: Variational problems and partial differential equations on implicit surfaces. J. Comput. Phys. 174, 759–780 (2001)MathSciNetCrossRef Bertalmio, M., Cheng, L.-T., Osher, S., Sapiro, G.: Variational problems and partial differential equations on implicit surfaces. J. Comput. Phys. 174, 759–780 (2001)MathSciNetCrossRef
8.
Zurück zum Zitat Buhmann, M.D.: Radial Basis Functions. Cambridge University Press, Cambridge (2003)CrossRef Buhmann, M.D.: Radial Basis Functions. Cambridge University Press, Cambridge (2003)CrossRef
9.
Zurück zum Zitat Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’01), pp. 67–76 (2001) Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’01), pp. 67–76 (2001)
10.
Zurück zum Zitat Chaplain, M.A., Ganesh, M., Graham, I.G.: Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth. J. Math. Biol. 42, 387–423 (2001)MathSciNetCrossRef Chaplain, M.A., Ganesh, M., Graham, I.G.: Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth. J. Math. Biol. 42, 387–423 (2001)MathSciNetCrossRef
11.
Zurück zum Zitat Chavez, C.E., Zemzemi, N., Coudillere, Y., Alonso-Atienza, F., Alvarez, D.: Inverse problem of electrocardiography: estimating the location of cardiac isquemia in a 3D geometry. In: Functional Imaging and Modelling of the Heart (FIMH2015) (2015) Chavez, C.E., Zemzemi, N., Coudillere, Y., Alonso-Atienza, F., Alvarez, D.: Inverse problem of electrocardiography: estimating the location of cardiac isquemia in a 3D geometry. In: Functional Imaging and Modelling of the Heart (FIMH2015) (2015)
12.
Zurück zum Zitat Dziuk, G., Elliott, C.: Surface finite elements for parabolic equations. J. Comput. Math. 25, 385–407 (2007)MathSciNet Dziuk, G., Elliott, C.: Surface finite elements for parabolic equations. J. Comput. Math. 25, 385–407 (2007)MathSciNet
13.
Zurück zum Zitat Fasshauer, G.E.: Meshfree Approximation Methods with Matlab. World Scientific Publishers, Singapore (2007)CrossRef Fasshauer, G.E.: Meshfree Approximation Methods with Matlab. World Scientific Publishers, Singapore (2007)CrossRef
14.
Zurück zum Zitat Fonberg, B., Flyer, N.: A primer on radial basis functions with applications to geosciences. In: CBMS-NSF Regional Conference Series in Applied Mathematics (2015) Fonberg, B., Flyer, N.: A primer on radial basis functions with applications to geosciences. In: CBMS-NSF Regional Conference Series in Applied Mathematics (2015)
15.
Zurück zum Zitat Fornberg, B., Lehto, E.: Stabilization of RBF-generated finite difference methods for convective PDEs. J. Comput. Phys. 230, 2270–2285 (2011)MathSciNetCrossRef Fornberg, B., Lehto, E.: Stabilization of RBF-generated finite difference methods for convective PDEs. J. Comput. Phys. 230, 2270–2285 (2011)MathSciNetCrossRef
16.
Zurück zum Zitat Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33, 869–892 (2011)MathSciNetCrossRef Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33, 869–892 (2011)MathSciNetCrossRef
17.
Zurück zum Zitat Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48, 853–867 (2004)MathSciNetCrossRef Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48, 853–867 (2004)MathSciNetCrossRef
18.
Zurück zum Zitat Flyer, N., Fornberg, B., Bayona, V., Barnett, G.: On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy. J. Comput. Phys. 321, 21–38 (2016)MathSciNetCrossRef Flyer, N., Fornberg, B., Bayona, V., Barnett, G.: On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy. J. Comput. Phys. 321, 21–38 (2016)MathSciNetCrossRef
19.
Zurück zum Zitat Flyer, N., Fornberg, B.: Radial basis functions: developments and applications to planetary scale flows. Comput. Fluids 26, 23–32 (2011)MathSciNetCrossRef Flyer, N., Fornberg, B.: Radial basis functions: developments and applications to planetary scale flows. Comput. Fluids 26, 23–32 (2011)MathSciNetCrossRef
20.
Zurück zum Zitat Flyer, N., Wright, G.B.: A radial basis function method for the shallow water equations on a sphere. Proc. R. Soc. A 465, 1949–1976 (2009)MathSciNetCrossRef Flyer, N., Wright, G.B.: A radial basis function method for the shallow water equations on a sphere. Proc. R. Soc. A 465, 1949–1976 (2009)MathSciNetCrossRef
21.
Zurück zum Zitat Fuselier, E.J., Wright, G.B.: A high order kernel method for diffusion and reaction-diffusion equations on surfaces. J. Sci. Comput. 56, 535–565 (2013)MathSciNetCrossRef Fuselier, E.J., Wright, G.B.: A high order kernel method for diffusion and reaction-diffusion equations on surfaces. J. Sci. Comput. 56, 535–565 (2013)MathSciNetCrossRef
22.
Zurück zum Zitat Greer, J.B.: An improvement of a recent Eulerian method for solving PDEs on general geometries. J. Sci. Comput. 29, 321–352 (2006)MathSciNetCrossRef Greer, J.B.: An improvement of a recent Eulerian method for solving PDEs on general geometries. J. Sci. Comput. 29, 321–352 (2006)MathSciNetCrossRef
23.
Zurück zum Zitat Gu, X., Wang, Y., Chan, T., Thompson, P., Yau, S.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imaging 23, 949–958 (2004)CrossRef Gu, X., Wang, Y., Chan, T., Thompson, P., Yau, S.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imaging 23, 949–958 (2004)CrossRef
24.
Zurück zum Zitat Holmes, E.E., Lewis, M.A., Banks, J.E., Veit, R.R.: Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75(1), 17–29 (1994)CrossRef Holmes, E.E., Lewis, M.A., Banks, J.E., Veit, R.R.: Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75(1), 17–29 (1994)CrossRef
25.
Zurück zum Zitat Holst, M.: Adaptive numerical treatment of elliptic systems on manifolds. Adv. Comput. Math. 15, 139–191 (2001) MathSciNetCrossRef Holst, M.: Adaptive numerical treatment of elliptic systems on manifolds. Adv. Comput. Math. 15, 139–191 (2001) MathSciNetCrossRef
26.
Zurück zum Zitat Larsson, E., Shcherbakov, V., Heryudono, A.: A least squares radial basis function partition of unity method for solving PDEs. SIAM J. Sci. Comput. 39(6), A2538–A2563 (2017) MathSciNetCrossRef Larsson, E., Shcherbakov, V., Heryudono, A.: A least squares radial basis function partition of unity method for solving PDEs. SIAM J. Sci. Comput. 39(6), A2538–A2563 (2017) MathSciNetCrossRef
27.
Zurück zum Zitat Lehto, E., Shankar, V., Wright, G.B.: A radial basis function (RBF) compact finite difference (FD) scheme for reaction–diffusion equations on surfaces. SIAM J. Sci. Comput. 39(5), 2129–2151 (2017)MathSciNetCrossRef Lehto, E., Shankar, V., Wright, G.B.: A radial basis function (RBF) compact finite difference (FD) scheme for reaction–diffusion equations on surfaces. SIAM J. Sci. Comput. 39(5), 2129–2151 (2017)MathSciNetCrossRef
28.
Zurück zum Zitat Macdonald, C.B., Ruuth, S.J.: The implicit closest point method for the numerical solution of partial differential equations on surfaces. SIAM J. Sci. Comput. 31, 4330–4350 (2009)MathSciNetCrossRef Macdonald, C.B., Ruuth, S.J.: The implicit closest point method for the numerical solution of partial differential equations on surfaces. SIAM J. Sci. Comput. 31, 4330–4350 (2009)MathSciNetCrossRef
29.
Zurück zum Zitat Martel, J.M., Platte, R.B.: Stability of radial basis function methods for convection problems on the circle and sphere. J. Sci. Comput. 69, 487–505 (2016)MathSciNetCrossRef Martel, J.M., Platte, R.B.: Stability of radial basis function methods for convection problems on the circle and sphere. J. Sci. Comput. 69, 487–505 (2016)MathSciNetCrossRef
31.
Zurück zum Zitat Mitchell, C.C., Shaeffer, D.G.: A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol. 65, 767–793 (2003)CrossRef Mitchell, C.C., Shaeffer, D.G.: A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol. 65, 767–793 (2003)CrossRef
32.
Zurück zum Zitat Piret, C.: The orthogonal gradients method: a radial basis functions method for solving partial differential equations on arbitrary surfaces. J. Comput. Phys. 231, 4662–4675 (2012)MathSciNetCrossRef Piret, C.: The orthogonal gradients method: a radial basis functions method for solving partial differential equations on arbitrary surfaces. J. Comput. Phys. 231, 4662–4675 (2012)MathSciNetCrossRef
34.
Zurück zum Zitat Sarra, S.A., Kansa, E.J.: Multiquadric radial basis function approximation methods for the numerical solution of partial differential equations. Adv. Comput. Mech. 2 (2009) Sarra, S.A., Kansa, E.J.: Multiquadric radial basis function approximation methods for the numerical solution of partial differential equations. Adv. Comput. Mech. 2 (2009)
35.
Zurück zum Zitat Shankar, V., Wright, G.B., Fogelson, A.L., Kirby, R.M.: A study of different modeling choices for simulating platelets within the immersed boundary method. Appl. Numer. Math. 63, 58–77 (2013)MathSciNetCrossRef Shankar, V., Wright, G.B., Fogelson, A.L., Kirby, R.M.: A study of different modeling choices for simulating platelets within the immersed boundary method. Appl. Numer. Math. 63, 58–77 (2013)MathSciNetCrossRef
36.
Zurück zum Zitat Shankar, V., Wright, G.B., Kirby, R.M., Fogelson, A.L.: A radial basis function (RBF)-finite difference (FD) method for diffusion and reaction diffusion equations on surfaces. J. Sci. Comput. 63, 745–768 (2014)MathSciNetCrossRef Shankar, V., Wright, G.B., Kirby, R.M., Fogelson, A.L.: A radial basis function (RBF)-finite difference (FD) method for diffusion and reaction diffusion equations on surfaces. J. Sci. Comput. 63, 745–768 (2014)MathSciNetCrossRef
37.
Zurück zum Zitat Shankar, V., Narayanb, A., Kirby, R.M.: RBF-LOI: augmenting radial basis functions (RBFs) with least orthogonal interpolation (LOI) for solving PDEs on surfaces. J. Comput. Phys. 373, 722–735 (2018)MathSciNetCrossRef Shankar, V., Narayanb, A., Kirby, R.M.: RBF-LOI: augmenting radial basis functions (RBFs) with least orthogonal interpolation (LOI) for solving PDEs on surfaces. J. Comput. Phys. 373, 722–735 (2018)MathSciNetCrossRef
38.
Zurück zum Zitat Shankar, V., Fogelson, A.L.: Hyperviscosity-based stabilization for radial basis function-finite difference (RBF-FD) discretizations of advection-diffusion equations. J. Comput. Phys. 372, 616–639 (2018)MathSciNetCrossRef Shankar, V., Fogelson, A.L.: Hyperviscosity-based stabilization for radial basis function-finite difference (RBF-FD) discretizations of advection-diffusion equations. J. Comput. Phys. 372, 616–639 (2018)MathSciNetCrossRef
39.
Zurück zum Zitat Shankar, V., Kirby, R.M., Fogelson, A.L.: Robust node generation for mesh-free discretizations on irregular domains and surfaces. SIAM J. Sci. Comput. 40, 2584–2608 (2018)MathSciNetCrossRef Shankar, V., Kirby, R.M., Fogelson, A.L.: Robust node generation for mesh-free discretizations on irregular domains and surfaces. SIAM J. Sci. Comput. 40, 2584–2608 (2018)MathSciNetCrossRef
40.
Zurück zum Zitat Shubin, M.A.: Asymptotic Behaviour of the Spectral Function. Pseudodifferential Operators and Spectral Theory. Springer, Berlin, Heidelberg (2001)CrossRef Shubin, M.A.: Asymptotic Behaviour of the Spectral Function. Pseudodifferential Operators and Spectral Theory. Springer, Berlin, Heidelberg (2001)CrossRef
41.
Zurück zum Zitat Turk, G.: Generating textures on arbitrary surfaces using reaction–diffusion. Comput. Graph. 25, 289–298 (1991)CrossRef Turk, G.: Generating textures on arbitrary surfaces using reaction–diffusion. Comput. Graph. 25, 289–298 (1991)CrossRef
42.
Zurück zum Zitat Turing, M.A.: The chemical basis of morhogenesis. Philos. Trans. R. Soc. B237, 37–72 (1952)MATH Turing, M.A.: The chemical basis of morhogenesis. Philos. Trans. R. Soc. B237, 37–72 (1952)MATH
Metadaten
Titel
A Local Radial Basis Function Method for the Laplace–Beltrami Operator
verfasst von
Diego Álvarez
Pedro González-Rodríguez
Manuel Kindelan
Publikationsdatum
01.03.2021
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2021
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01399-3

Weitere Artikel der Ausgabe 3/2021

Journal of Scientific Computing 3/2021 Zur Ausgabe

Premium Partner