Skip to main content
Erschienen in: Journal of Scientific Computing 3/2021

01.03.2021

Optimal Petrov–Galerkin Spectral Approximation Method for the Fractional Diffusion, Advection, Reaction Equation on a Bounded Interval

verfasst von: Xiangcheng Zheng, V. J. Ervin, Hong Wang

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper we investigate the numerical approximation of the fractional diffusion, advection, reaction equation on a bounded interval. Recently the explicit form of the solution to this equation was obtained. Using the explicit form of the boundary behavior of the solution and Jacobi polynomials, a Petrov–Galerkin approximation scheme is proposed and analyzed. Numerical experiments are presented which support the theoretical results, and demonstrate the accuracy and optimal convergence of the approximation method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Volume 55 of National Bureau of Standards Applied Mathematics Series. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington (1964) Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Volume 55 of National Bureau of Standards Applied Mathematics Series. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington (1964)
2.
Zurück zum Zitat Acosta, G., Borthagaray, J.P., Bruno, O., Maas, M.: Regularity theory and high order numerical methods for the (1-d)-fractional Laplacian. Math. Comput. 87, 1821–1857 (2018)MathSciNetCrossRef Acosta, G., Borthagaray, J.P., Bruno, O., Maas, M.: Regularity theory and high order numerical methods for the (1-d)-fractional Laplacian. Math. Comput. 87, 1821–1857 (2018)MathSciNetCrossRef
3.
Zurück zum Zitat Babuška, I., Guo, B.: Direct and inverse approximation theorems for the \(p\)-version of the finite element method in the framework of weighted Besov spaces. I. Approximability of functions in the weighted Besov spaces. SIAM J. Numer. Anal. 39(5):1512–1538 (2001/02) Babuška, I., Guo, B.: Direct and inverse approximation theorems for the \(p\)-version of the finite element method in the framework of weighted Besov spaces. I. Approximability of functions in the weighted Besov spaces. SIAM J. Numer. Anal. 39(5):1512–1538 (2001/02)
4.
Zurück zum Zitat Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36(6), 1413–1424 (2000)CrossRef Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36(6), 1413–1424 (2000)CrossRef
5.
Zurück zum Zitat Bernardi, C., Dauge, M., Maday, Y.: Polynomials in the Sobolev World. Preprint IRMAR 07-14, Université de Rennes 1 (2007) Bernardi, C., Dauge, M., Maday, Y.: Polynomials in the Sobolev World. Preprint IRMAR 07-14, Université de Rennes 1 (2007)
6.
Zurück zum Zitat Bernardi, C., Dauge, M., Maday, Y.: Polynomials in weighted Sobolev spaces: basics and trace liftings. Internal Report 92039, Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Paris (1992) Bernardi, C., Dauge, M., Maday, Y.: Polynomials in weighted Sobolev spaces: basics and trace liftings. Internal Report 92039, Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Paris (1992)
7.
Zurück zum Zitat Buades, A., Coll, B., Morel, J.M.:Image denoising methods. A new nonlocal principle. SIAM Rev. 52(1):113–147 (2010). Reprint of “A review of image denoising algorithms, with a new one” [MR2162865] Buades, A., Coll, B., Morel, J.M.:Image denoising methods. A new nonlocal principle. SIAM Rev. 52(1):113–147 (2010). Reprint of “A review of image denoising algorithms, with a new one” [MR2162865]
8.
Zurück zum Zitat Chen, H., Wang, H.: Numerical simulation for conservative fractional diffusion equations by an expanded mixed formulation. J. Comput. Appl. Math. 296, 480–498 (2016)MathSciNetCrossRef Chen, H., Wang, H.: Numerical simulation for conservative fractional diffusion equations by an expanded mixed formulation. J. Comput. Appl. Math. 296, 480–498 (2016)MathSciNetCrossRef
9.
Zurück zum Zitat Chen, S., Shen, J., Wang, L.-L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603–1638 (2016)MathSciNetCrossRef Chen, S., Shen, J., Wang, L.-L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603–1638 (2016)MathSciNetCrossRef
10.
Zurück zum Zitat Cui, M.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228(20), 7792–7804 (2009)MathSciNetCrossRef Cui, M.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228(20), 7792–7804 (2009)MathSciNetCrossRef
11.
Zurück zum Zitat Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159. Springer, New York (2004)CrossRef Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159. Springer, New York (2004)CrossRef
12.
Zurück zum Zitat Ervin, V.J.: Regularity of the solution to fractional diffusion, advection, reaction equations. https://arxiv.org/abs/1911.03261 (2019) Ervin, V.J.: Regularity of the solution to fractional diffusion, advection, reaction equations. https://arxiv.org/abs/1911.03261 (2019)
13.
Zurück zum Zitat Ervin, V.J., Heuer, N., Roop, J.P.: Regularity of the solution to 1-D fractional order diffusion equations. Math. Comput. 87, 2273–2294 (2018)MathSciNetCrossRef Ervin, V.J., Heuer, N., Roop, J.P.: Regularity of the solution to 1-D fractional order diffusion equations. Math. Comput. 87, 2273–2294 (2018)MathSciNetCrossRef
14.
Zurück zum Zitat Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22(3), 558–576 (2006)MathSciNetCrossRef Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22(3), 558–576 (2006)MathSciNetCrossRef
15.
Zurück zum Zitat Gatto, P., Hesthaven, J.S.: Numerical approximation of the fractional Laplacian via \(hp\)-finite elements, with an application to image denoising. J. Sci. Comput. 65(1), 249–270 (2015)MathSciNetCrossRef Gatto, P., Hesthaven, J.S.: Numerical approximation of the fractional Laplacian via \(hp\)-finite elements, with an application to image denoising. J. Sci. Comput. 65(1), 249–270 (2015)MathSciNetCrossRef
16.
Zurück zum Zitat Ginting, V., Li, Y.: On the fractional diffusion–advection–reaction equation in \({\mathbb{R}}\). Fract. Calc. Appl. Anal. 22(4), 1039–1062 (2019)MathSciNetCrossRef Ginting, V., Li, Y.: On the fractional diffusion–advection–reaction equation in \({\mathbb{R}}\). Fract. Calc. Appl. Anal. 22(4), 1039–1062 (2019)MathSciNetCrossRef
17.
Zurück zum Zitat Gui, W., Babuška, I.: The \(h,\;p\) and \(h\)-\(p\) versions of the finite element method in \(1\) dimension. II. The error analysis of the \(h\)- and \(h\)-\(p\) versions. Numer. Math. 49(6), 613–657 (1986)MathSciNetCrossRef Gui, W., Babuška, I.: The \(h,\;p\) and \(h\)-\(p\) versions of the finite element method in \(1\) dimension. II. The error analysis of the \(h\)- and \(h\)-\(p\) versions. Numer. Math. 49(6), 613–657 (1986)MathSciNetCrossRef
18.
Zurück zum Zitat Guo, B.-Y., Wang, L.-L.: Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J. Approx. Theory 128(1), 1–41 (2004)MathSciNetCrossRef Guo, B.-Y., Wang, L.-L.: Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J. Approx. Theory 128(1), 1–41 (2004)MathSciNetCrossRef
19.
Zurück zum Zitat Hao, Z., Lin, G., Zhang, Z.: Error estimates of a spectral Petrov–Galerkin method for two-sided fractional reaction–diffusion equations. Appl. Math. Comput. 374, 125045 (2020)MathSciNetMATH Hao, Z., Lin, G., Zhang, Z.: Error estimates of a spectral Petrov–Galerkin method for two-sided fractional reaction–diffusion equations. Appl. Math. Comput. 374, 125045 (2020)MathSciNetMATH
20.
Zurück zum Zitat Hao, Z., Zhang, Z.: Optimal regularity and error estimates of a spectral galerkin method for fractional advection–diffusion–reaction equations. SIAM J. Numer. Anal. 58(1), 211–233 (2020)MathSciNetCrossRef Hao, Z., Zhang, Z.: Optimal regularity and error estimates of a spectral galerkin method for fractional advection–diffusion–reaction equations. SIAM J. Numer. Anal. 58(1), 211–233 (2020)MathSciNetCrossRef
21.
Zurück zum Zitat Jia, L., Chen, H., Ervin, V.J.: Existence and regularity of solutions to 1-D fractional order diffusion equations. Electron. J. Differ. Equ. 93, 1–21 (2019)MathSciNetMATH Jia, L., Chen, H., Ervin, V.J.: Existence and regularity of solutions to 1-D fractional order diffusion equations. Electron. J. Differ. Equ. 93, 1–21 (2019)MathSciNetMATH
22.
Zurück zum Zitat Jin, B., Lazarov, R., Lu, X., Zhou, Z.: A simple finite element method for boundary value problems with a Riemann–Liouville derivative. J. Comput. Appl. Math. 293, 94–111 (2016)MathSciNetCrossRef Jin, B., Lazarov, R., Lu, X., Zhou, Z.: A simple finite element method for boundary value problems with a Riemann–Liouville derivative. J. Comput. Appl. Math. 293, 94–111 (2016)MathSciNetCrossRef
23.
Zurück zum Zitat Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comput. 84(296), 2665–2700 (2015)MathSciNetCrossRef Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comput. 84(296), 2665–2700 (2015)MathSciNetCrossRef
24.
Zurück zum Zitat Jin, B., Lazarov, R., Zhou, Z.: A Petrov–Galerkin finite element method for fractional convection–diffusion equations. SIAM J. Numer. Anal. 54(1), 481–503 (2016)MathSciNetCrossRef Jin, B., Lazarov, R., Zhou, Z.: A Petrov–Galerkin finite element method for fractional convection–diffusion equations. SIAM J. Numer. Anal. 54(1), 481–503 (2016)MathSciNetCrossRef
25.
Zurück zum Zitat Li, C., Zeng, F., Liu, F.: Spectral approximations to the fractional integral and derivative. Fract. Calc. Appl. Anal. 15(3), 383–406 (2012)MathSciNetCrossRef Li, C., Zeng, F., Liu, F.: Spectral approximations to the fractional integral and derivative. Fract. Calc. Appl. Anal. 15(3), 383–406 (2012)MathSciNetCrossRef
26.
Zurück zum Zitat Li, Y., Chen, H., Wang, H.: A mixed-type Galerkin variational formulation and fast algorithms for variable-coefficient fractional diffusion equations. Math. Methods Appl. Sci. 40(14), 5018–5034 (2017)MathSciNetCrossRef Li, Y., Chen, H., Wang, H.: A mixed-type Galerkin variational formulation and fast algorithms for variable-coefficient fractional diffusion equations. Math. Methods Appl. Sci. 40(14), 5018–5034 (2017)MathSciNetCrossRef
27.
Zurück zum Zitat Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. In: Proceedings of the International Conference on Boundary and Interior Layers—Computational and Asymptotic Methods (BAIL 2002), vol. 166, pp. 209–219 (2004) Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. In: Proceedings of the International Conference on Boundary and Interior Layers—Computational and Asymptotic Methods (BAIL 2002), vol. 166, pp. 209–219 (2004)
28.
Zurück zum Zitat Liu, Q., Liu, F., Turner, I., Anh, V.: Finite element approximation for a modified anomalous subdiffusion equation. Appl. Math. Model. 35(8), 4103–4116 (2011)MathSciNetCrossRef Liu, Q., Liu, F., Turner, I., Anh, V.: Finite element approximation for a modified anomalous subdiffusion equation. Appl. Math. Model. 35(8), 4103–4116 (2011)MathSciNetCrossRef
29.
Zurück zum Zitat Mainardi, F.: Fractional calculus: Some basic problems in continuum and statistical mechanics. In: Fractals and Fractional Calculus in Continuum Mechanics (Udine. 1996), Volume 378 of CISM Courses and Lectures, pp. 291–348. Springer, Vienna (1997) Mainardi, F.: Fractional calculus: Some basic problems in continuum and statistical mechanics. In: Fractals and Fractional Calculus in Continuum Mechanics (Udine. 1996), Volume 378 of CISM Courses and Lectures, pp. 291–348. Springer, Vienna (1997)
30.
Zurück zum Zitat Mao, Z., Chen, S., Shen, J.: Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math. 106, 165–181 (2016)MathSciNetCrossRef Mao, Z., Chen, S., Shen, J.: Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math. 106, 165–181 (2016)MathSciNetCrossRef
31.
Zurück zum Zitat Mao, Z., Em-Karniadakis, G.: A spectral method (of exponential convergence) for singular solutions of the diffusion equation with general two-sided fractional derivative. SIAM J. Numer. Anal. 56(1), 24–49 (2018)MathSciNetCrossRef Mao, Z., Em-Karniadakis, G.: A spectral method (of exponential convergence) for singular solutions of the diffusion equation with general two-sided fractional derivative. SIAM J. Numer. Anal. 56(1), 24–49 (2018)MathSciNetCrossRef
32.
Zurück zum Zitat Mao, Z., Shen, J.: Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients. J. Comput. Phys. 307, 243–261 (2016)MathSciNetCrossRef Mao, Z., Shen, J.: Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients. J. Comput. Phys. 307, 243–261 (2016)MathSciNetCrossRef
33.
Zurück zum Zitat Mao, Z., Shen, J.: Spectral element method with geometric mesh for two-sided fractional differential equations. Adv. Comput. Math. 44(3), 745–771 (2018)MathSciNetCrossRef Mao, Z., Shen, J.: Spectral element method with geometric mesh for two-sided fractional differential equations. Adv. Comput. Math. 44(3), 745–771 (2018)MathSciNetCrossRef
34.
Zurück zum Zitat Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004)MathSciNetCrossRef Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004)MathSciNetCrossRef
35.
Zurück zum Zitat Shlesinger, M.F., West, B.J., Klafter, J.: Lévy dynamics of enhanced diffusion: application to turbulence. Phys. Rev. Lett. 58(11), 1100–1103 (1987)MathSciNetCrossRef Shlesinger, M.F., West, B.J., Klafter, J.: Lévy dynamics of enhanced diffusion: application to turbulence. Phys. Rev. Lett. 58(11), 1100–1103 (1987)MathSciNetCrossRef
36.
Zurück zum Zitat Szegő, G.: Orthogonal polynomials. American Mathematical Society, Providence, R.I., 4th edition, 1975. American Mathematical Society, Colloquium Publications, vol. XXIII Szegő, G.: Orthogonal polynomials. American Mathematical Society, Providence, R.I., 4th edition, 1975. American Mathematical Society, Colloquium Publications, vol. XXIII
37.
Zurück zum Zitat Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220(2), 813–823 (2007)MathSciNetCrossRef Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220(2), 813–823 (2007)MathSciNetCrossRef
38.
Zurück zum Zitat Wang, H., Basu, T.S.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34(5), A2444–A2458 (2012)MathSciNetCrossRef Wang, H., Basu, T.S.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34(5), A2444–A2458 (2012)MathSciNetCrossRef
39.
Zurück zum Zitat Wang, H., Yang, D.: Wellposedness of variable-coefficient conservative fractional elliptic differential equations. SIAM J. Numer. Anal. 51(2), 1088–1107 (2013)MathSciNetCrossRef Wang, H., Yang, D.: Wellposedness of variable-coefficient conservative fractional elliptic differential equations. SIAM J. Numer. Anal. 51(2), 1088–1107 (2013)MathSciNetCrossRef
40.
Zurück zum Zitat Xu, Q., Hesthaven, J.S.: Discontinuous Galerkin method for fractional convection–diffusion equations. SIAM J. Numer. Anal. 52(1), 405–423 (2014)MathSciNetCrossRef Xu, Q., Hesthaven, J.S.: Discontinuous Galerkin method for fractional convection–diffusion equations. SIAM J. Numer. Anal. 52(1), 405–423 (2014)MathSciNetCrossRef
41.
Zurück zum Zitat Zaslavsky, G.M., Stevens, D., Weitzner, H.: Self-similar transport in incomplete chaos. Phys. Rev. E (3) 48(3), 1683–1694 (1993)MathSciNetCrossRef Zaslavsky, G.M., Stevens, D., Weitzner, H.: Self-similar transport in incomplete chaos. Phys. Rev. E (3) 48(3), 1683–1694 (1993)MathSciNetCrossRef
42.
Zurück zum Zitat Zayernouri, M., Karniadakis, G.E.: Fractional Sturm–Liouville eigen-problems: theory and numerical approximation. J. Comput. Phys. 252, 495–517 (2013)MathSciNetCrossRef Zayernouri, M., Karniadakis, G.E.: Fractional Sturm–Liouville eigen-problems: theory and numerical approximation. J. Comput. Phys. 252, 495–517 (2013)MathSciNetCrossRef
43.
Zurück zum Zitat Zheng, X., Ervin, V.J., Wang, H.: Spectral approximation of a variable coefficient fractional diffusion equation in one space dimension. Appl. Math. Comput. 361, 98–111 (2019)MathSciNetMATH Zheng, X., Ervin, V.J., Wang, H.: Spectral approximation of a variable coefficient fractional diffusion equation in one space dimension. Appl. Math. Comput. 361, 98–111 (2019)MathSciNetMATH
44.
Zurück zum Zitat Zheng, X., Ervin, V.J., Wang, H.: An indirect finite element method for variable-coefficient space-fractional diffusion equations and its optimal-order error estimates. Commun. Appl. Math. Comput. 2(1), 147–162 (2020)MathSciNetCrossRef Zheng, X., Ervin, V.J., Wang, H.: An indirect finite element method for variable-coefficient space-fractional diffusion equations and its optimal-order error estimates. Commun. Appl. Math. Comput. 2(1), 147–162 (2020)MathSciNetCrossRef
Metadaten
Titel
Optimal Petrov–Galerkin Spectral Approximation Method for the Fractional Diffusion, Advection, Reaction Equation on a Bounded Interval
verfasst von
Xiangcheng Zheng
V. J. Ervin
Hong Wang
Publikationsdatum
01.03.2021
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2021
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01366-y

Weitere Artikel der Ausgabe 3/2021

Journal of Scientific Computing 3/2021 Zur Ausgabe

Premium Partner