Skip to main content
Erschienen in: Strength of Materials 3/2022

06.09.2022

A Mathematical Model of the Dynamic Behavior of a Transportation System with Pendulum Shock Absorbers

verfasst von: V. P. Legeza, O. M. Neshchadym

Erschienen in: Strength of Materials | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new mathematical model is proposed that describes the process of damping longitudinal transport effects, which is based on the use of special shock-absorbing pendulum-type turnstiles. The purpose of the work is to assess the level of effectiveness of shock absorbers to reduce longitudinal dynamic effects on heavy and oversized cargo during its transportation by rail. An extreme variant of dynamic loading of a transport system equipped with the proposed damping system was studied by mathematical modeling methods. Differential equations of motion of the transport system are formulated and integrated by numerical methods. As a result of numerical experiments, the main regulatory characteristics of pendulum shock absorbers, which affect the quality of their functioning, have been established. A quantitative assessment of the effectiveness of the use of such shock-absorbing devices is given. It is shown that when using pendulum shock absorbers, the level of dynamic effects on transported goods can be reduced by four times compared to the existing traditional method of railway transportation. It is noted that the influence of the length of pendulum suspensions on various elements of the vibration protection system is multidirectional: with a decrease in the length of pendulum suspensions, the maximum modules of acceleration of support cars decrease somewhat, and the maximum module of acceleration of the load increases noticeably. In the boundary case, when the length of pendulum suspensions tends to zero, all three indicated acceleration modules tend to the same single value. The numerical analysis of the dynamic behavior of the vibration protection system once again confirmed the following general result of previous theoretical and experimental studies: in order to significantly reduce the maximum level of longitudinal transport effects on the load, its fastening relative to the cars should be carried out in a “movable-adjustable” way.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Technical Conditions of Accommodation and Fastening of Cargo, Annex 3 to the Agreement on International Goods Transport by Rail (IGTR) [in Russian], Organization of Cooperation between Railways (OCRW), Devolta, Kyiv (2011). Technical Conditions of Accommodation and Fastening of Cargo, Annex 3 to the Agreement on International Goods Transport by Rail (IGTR) [in Russian], Organization of Cooperation between Railways (OCRW), Devolta, Kyiv (2011).
2.
Zurück zum Zitat Technical Conditions for Loading and Securing Cargo, Annex 3 to the Agreement on International Goods Transport by Rail (IGTR) [in Russian], Organization of Cooperation between Railways (OCRW), Devolta, Kyiv (2018). Technical Conditions for Loading and Securing Cargo, Annex 3 to the Agreement on International Goods Transport by Rail (IGTR) [in Russian], Organization of Cooperation between Railways (OCRW), Devolta, Kyiv (2018).
3.
Zurück zum Zitat Loading Guidelines Code of Practice for the Loading and Securing of Goods on Railway Wagons, International Union Railways, Paris (2019). Loading Guidelines Code of Practice for the Loading and Securing of Goods on Railway Wagons, International Union Railways, Paris (2019).
4.
Zurück zum Zitat V. I. Pastushenko and V. P. Legeza, “Theoretical investigations of transport loads on a building structure when fastening it to a wagon with the application of wedge damper”, in: Building Structures [in Russian], Issue 36, Budivelnyk, Kiev (1983), pp. 102–105. V. I. Pastushenko and V. P. Legeza, “Theoretical investigations of transport loads on a building structure when fastening it to a wagon with the application of wedge damper”, in: Building Structures [in Russian], Issue 36, Budivelnyk, Kiev (1983), pp. 102–105.
5.
Zurück zum Zitat A. D. Malov, O. I. Mikhailov, G. M. Shteinfer, et al., Cargo Placement and Fastening in Wagons [in Russian], Transport, Moscow (1980). A. D. Malov, O. I. Mikhailov, G. M. Shteinfer, et al., Cargo Placement and Fastening in Wagons [in Russian], Transport, Moscow (1980).
6.
Zurück zum Zitat A. V. Shatunov, The Load of a Double Platform Coupling at the Resource-Saving Way of Transportation of Long-Length Cargo [in Russian], Author’s Abstract of the Candidate Degree Thesis (Tech. Sci.), Dnepropetrovsk Institute of Railway Engineers, Dnepropetrovsk (1992). A. V. Shatunov, The Load of a Double Platform Coupling at the Resource-Saving Way of Transportation of Long-Length Cargo [in Russian], Author’s Abstract of the Candidate Degree Thesis (Tech. Sci.), Dnepropetrovsk Institute of Railway Engineers, Dnepropetrovsk (1992).
7.
Zurück zum Zitat L. A. Manashkin, B. S. Ratner, A. V. Yurchenko, et al., “Research with computer loads acting on wagons and depreciated loads during coupling collision and start-up of freight trains”, in: Problems of Mechanics of Land Transport [in Russian], Issue 199/25, Dnepropetrovsk (1978), pp. 87–93. L. A. Manashkin, B. S. Ratner, A. V. Yurchenko, et al., “Research with computer loads acting on wagons and depreciated loads during coupling collision and start-up of freight trains”, in: Problems of Mechanics of Land Transport [in Russian], Issue 199/25, Dnepropetrovsk (1978), pp. 87–93.
8.
Zurück zum Zitat S. M. Vasil’ev, “Comparative analysis of dynamic characteristics of turnstile-securing devices of roller, slide, and wedge types”, Nauka Pogr. Transport., No. 23, 16–19 (2008). S. M. Vasil’ev, “Comparative analysis of dynamic characteristics of turnstile-securing devices of roller, slide, and wedge types”, Nauka Pogr. Transport., No. 23, 16–19 (2008).
9.
Zurück zum Zitat S. M. Vasil’ev, A. D. Zheleznyakov, and L. P. Tselkovikova, “Modeling of wagon collisions under dry friction in cargo supports”, Nauka Progr. Transport., No. 4 (64), 116–124 (2016). S. M. Vasil’ev, A. D. Zheleznyakov, and L. P. Tselkovikova, “Modeling of wagon collisions under dry friction in cargo supports”, Nauka Progr. Transport., No. 4 (64), 116–124 (2016).
10.
Zurück zum Zitat V. I. Sen’ko, A. D. Zheleznyakov, and S. M. Vasil’ev, “Rolling stock and fastening devices for the transportation of long goods”, Vestn. BGUT, Nauka Transport, No. 1 (8), 4–6 (2004). V. I. Sen’ko, A. D. Zheleznyakov, and S. M. Vasil’ev, “Rolling stock and fastening devices for the transportation of long goods”, Vestn. BGUT, Nauka Transport, No. 1 (8), 4–6 (2004).
12.
Zurück zum Zitat V. P. Legeza, “Kinematics and dynamics of a mechanical system on rollers that provide nonholonomic constraints”, J. Math. Sci., 72, No. 5, 3299–3305 (1994).CrossRef V. P. Legeza, “Kinematics and dynamics of a mechanical system on rollers that provide nonholonomic constraints”, J. Math. Sci., 72, No. 5, 3299–3305 (1994).CrossRef
13.
Zurück zum Zitat V. Legeza, I. Dychka, R. Hadyniak, and L. Oleshchenko, “Mathematical model of the dynamics in a one nonholonomic vibration protection system”, Int. J. Intell. Syst. Appl. (IJISA), 10, No. 10, 20–26 (2018). V. Legeza, I. Dychka, R. Hadyniak, and L. Oleshchenko, “Mathematical model of the dynamics in a one nonholonomic vibration protection system”, Int. J. Intell. Syst. Appl. (IJISA), 10, No. 10, 20–26 (2018).
15.
Zurück zum Zitat B. N. Lavrenov, Methods of Placement and Fastening of Cargoes on Platform Couplings Using a New Pendulum-Type Turnstile [in Russian], Author’s Abstract of the Candidate Degree Thesis (Tech. Sci.), MIIT, Moscow (1989). B. N. Lavrenov, Methods of Placement and Fastening of Cargoes on Platform Couplings Using a New Pendulum-Type Turnstile [in Russian], Author’s Abstract of the Candidate Degree Thesis (Tech. Sci.), MIIT, Moscow (1989).
16.
Zurück zum Zitat Q. Wu, M. Spiryagin, and C. Cole, “Longitudinal train dynamics: an overview”, Vehicle Syst. Dyn., 54, No. 12, 1688–1714 (2016).CrossRef Q. Wu, M. Spiryagin, and C. Cole, “Longitudinal train dynamics: an overview”, Vehicle Syst. Dyn., 54, No. 12, 1688–1714 (2016).CrossRef
17.
Zurück zum Zitat N. Andersson, P. Andersson, R. Bylander, et al., Equipment for Rational Securing of Cargo on Railway Wagons, VINNOVA Report VR 2004:05, VINNOVA – Swedish Agency for Innovation Systems (2004). N. Andersson, P. Andersson, R. Bylander, et al., Equipment for Rational Securing of Cargo on Railway Wagons, VINNOVA Report VR 2004:05, VINNOVA – Swedish Agency for Innovation Systems (2004).
18.
Zurück zum Zitat M. Ansari, E. Esmailzadeh, and D. Younesian, “Longitudinal dynamics of freight trains”, Int. J. Heavy Veh. Syst., 16, Nos. 1–2, 102–131 (2009).CrossRef M. Ansari, E. Esmailzadeh, and D. Younesian, “Longitudinal dynamics of freight trains”, Int. J. Heavy Veh. Syst., 16, Nos. 1–2, 102–131 (2009).CrossRef
19.
Zurück zum Zitat P. Belforte, F. Cheli, G. Diana, and S. Melzi, “Numerical and experimental approach for the evaluation of severe longitudinal dynamics of heavy freight trains”, Vehicle Syst. Dyn., 46, Suppl., 937–955 (2008). P. Belforte, F. Cheli, G. Diana, and S. Melzi, “Numerical and experimental approach for the evaluation of severe longitudinal dynamics of heavy freight trains”, Vehicle Syst. Dyn., 46, Suppl., 937–955 (2008).
20.
Zurück zum Zitat G. Diana, F. Cheli, P. Belforte, and S. Melzi, “Numerical and experimental investigation of heavy freight train dynamics”, in: Proc. of IMECE, Paper No: IMECE2007-42693, Washington (2007), pp. 439–448. G. Diana, F. Cheli, P. Belforte, and S. Melzi, “Numerical and experimental investigation of heavy freight train dynamics”, in: Proc. of IMECE, Paper No: IMECE2007-42693, Washington (2007), pp. 439–448.
21.
Zurück zum Zitat C. Cole, “Improvements to wagon connection modelling for longitudinal train simulation”, in: Proc. of Conf. on Railway Engineering, Rockhampton (1998), pp. 187–194. C. Cole, “Improvements to wagon connection modelling for longitudinal train simulation”, in: Proc. of Conf. on Railway Engineering, Rockhampton (1998), pp. 187–194.
22.
Zurück zum Zitat C. Cole, “Longitudinal train dynamics”, in: S. Iwnicki (Ed.), Handbook of Railway Vehicle Dynamics, Taylor&Francis, London (2006), pp. 239–278. C. Cole, “Longitudinal train dynamics”, in: S. Iwnicki (Ed.), Handbook of Railway Vehicle Dynamics, Taylor&Francis, London (2006), pp. 239–278.
23.
Zurück zum Zitat C. Cole, M. Spiryagin, Q. Wu, and Y. Q. Sun, “Modeling, simulation and applications of longitudinal train dynamics”, Vehicle Syst. Dyn., 55, No. 10, 1498–1571 (2017).CrossRef C. Cole, M. Spiryagin, Q. Wu, and Y. Q. Sun, “Modeling, simulation and applications of longitudinal train dynamics”, Vehicle Syst. Dyn., 55, No. 10, 1498–1571 (2017).CrossRef
24.
Zurück zum Zitat D. Z. Wang, “Consideration on the overlength goods transportation”, Railway Freight Transport, 5, 31–33 (2002). D. Z. Wang, “Consideration on the overlength goods transportation”, Railway Freight Transport, 5, 31–33 (2002).
25.
Zurück zum Zitat L. N. Nikol’skii and B. G. Keglin, Shock Absorbers of Rolling Stock [in Russian], Mashinostroenie, Moscow (1986). L. N. Nikol’skii and B. G. Keglin, Shock Absorbers of Rolling Stock [in Russian], Mashinostroenie, Moscow (1986).
27.
Zurück zum Zitat DBN V1.2.-2:2006. System of Ensuring Reliability and Safety of Building Structures. Pressure and Influence. Design Standards [in Ukrainian] Kyiv (2006). DBN V1.2.-2:2006. System of Ensuring Reliability and Safety of Building Structures. Pressure and Influence. Design Standards [in Ukrainian] Kyiv (2006).
Metadaten
Titel
A Mathematical Model of the Dynamic Behavior of a Transportation System with Pendulum Shock Absorbers
verfasst von
V. P. Legeza
O. M. Neshchadym
Publikationsdatum
06.09.2022
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 3/2022
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-022-00415-1

Weitere Artikel der Ausgabe 3/2022

Strength of Materials 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.