Skip to main content
Erschienen in: Strength of Materials 3/2022

06.09.2022

Effect of Higher-Order Terms in the Thermal Transient Stress Intensity Factor for a Cracked Semi-Infinite Medium Under Thermal Shock

verfasst von: M. Fakoor, S. Sotoudeh

Erschienen in: Strength of Materials | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper studies the transient thermal fracture problem of a semi-infinite medium containing an edge crack using the non-Fourier heat conduction theory. Dual-phase-lag (DPL) model, which takes into account the effect of higher-order terms, (named x-DPL model) is proposed to predict the temperature gradient of the medium, which experiences a heat shock on its edge. The temperature gradient and the corresponding thermal stresses are obtained by applying the Laplace transform method and neglecting the thermo-elastic coupling and inertial effects in the absence of crack for the semi-infinite medium. Thereafter, mode I crack problem is formulated in the Laplace domain using the superposition method. Numerical results of the thermal stress and mode I stress intensity factor (SIF) are calculated by implementing Durbin’s method in the time domain. The effects of higher-order terms on the axial thermal stress and the mode I SIF are investigated and discussed. The DPL model that considers higher-order terms is more conservative than this model neglecting these terms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. P. Krasnyuk, “Thermoelastic contact problem for a layer interacting with a rigid substrate under transient frictional heat generation conditions,” Strength Mater., 40, No. 3, 381–395 (2008), https://doi.org/https://doi.org/10.1007/s11223-008-9024-0. P. P. Krasnyuk, “Thermoelastic contact problem for a layer interacting with a rigid substrate under transient frictional heat generation conditions,” Strength Mater., 40, No. 3, 381–395 (2008), https://​doi.​org/​https://​doi.​org/​10.​1007/​s11223-008-9024-0.
2.
Zurück zum Zitat P. Vernotte, “Les paradoxes de la theorie continue de l’equation de la chaleur,” Compt. Rendu, 246, 3154–3155 (1958). P. Vernotte, “Les paradoxes de la theorie continue de l’equation de la chaleur,” Compt. Rendu, 246, 3154–3155 (1958).
3.
Zurück zum Zitat D. Y. Tzou, “The generalized lagging response in small-scale and high-rate heating,” Int. J. Heat Mass Tran., 38, No. 17, 3231–3240 (1995).CrossRef D. Y. Tzou, “The generalized lagging response in small-scale and high-rate heating,” Int. J. Heat Mass Tran., 38, No. 17, 3231–3240 (1995).CrossRef
4.
Zurück zum Zitat K. Daneshjou, M. Bakhtiari, H. Parsania, and M. Fakoor, “Non-Fourier heat conduction analysis of infinite 2D orthotropic FG hollow cylinders subjected to time-dependent heat source,” Appl. Therm. Eng., 98, 582–590 (2016).CrossRef K. Daneshjou, M. Bakhtiari, H. Parsania, and M. Fakoor, “Non-Fourier heat conduction analysis of infinite 2D orthotropic FG hollow cylinders subjected to time-dependent heat source,” Appl. Therm. Eng., 98, 582–590 (2016).CrossRef
5.
Zurück zum Zitat K. Daneshjou, M. Bakhtiari, R. Alibakhshi, and M. Fakoor, “Transient thermal analysis in 2D orthotropic FG hollow cylinder with heat source,” Int. J. Heat Mass Tran., 89, 977–984 (2015).CrossRef K. Daneshjou, M. Bakhtiari, R. Alibakhshi, and M. Fakoor, “Transient thermal analysis in 2D orthotropic FG hollow cylinder with heat source,” Int. J. Heat Mass Tran., 89, 977–984 (2015).CrossRef
6.
Zurück zum Zitat M. Bakhtiari, K. Daneshjou, H. Parsania, and M. Fakoor, “Hyperbolic heat conduction analysis for an orthotropic FG hollow sphere with internal heat source. Application of a new augmented state space method,” Heat Transf. Res., 48, No. 15, 1399–1419 (2017).CrossRef M. Bakhtiari, K. Daneshjou, H. Parsania, and M. Fakoor, “Hyperbolic heat conduction analysis for an orthotropic FG hollow sphere with internal heat source. Application of a new augmented state space method,” Heat Transf. Res., 48, No. 15, 1399–1419 (2017).CrossRef
7.
Zurück zum Zitat A. S. Semenov and L. B. Getsov, “Thermal fatigue fracture criteria of single crystal heat-resistant alloys and methods for identification of their parameters,” Strength Mater., 46, No. 1, 38–48 (2014), https://doi.org/https://doi.org/10.1007/s11223-014-9513-2. A. S. Semenov and L. B. Getsov, “Thermal fatigue fracture criteria of single crystal heat-resistant alloys and methods for identification of their parameters,” Strength Mater., 46, No. 1, 38–48 (2014), https://​doi.​org/​https://​doi.​org/​10.​1007/​s11223-014-9513-2.
8.
Zurück zum Zitat V. D. Poznyakov, L. I. Markashova, V. D. Shelyagin, et al., “Cold cracking resistance of butt joints in high-strength steels with different welding techniques,” Strength Mater., 51, No. 6, 843–851 (2019), https://doi.org/https://doi.org/10.1007/s11223-020-00132-7. V. D. Poznyakov, L. I. Markashova, V. D. Shelyagin, et al., “Cold cracking resistance of butt joints in high-strength steels with different welding techniques,” Strength Mater., 51, No. 6, 843–851 (2019), https://​doi.​org/​https://​doi.​org/​10.​1007/​s11223-020-00132-7.
9.
Zurück zum Zitat V. M. Finkel’ and N. I. Alyushina, “Mechanisms of crack initiation and fracture of the surface of crystals of lithium fluoride and calcite in pulsed thermal loading,” Strength Mater., 17, No. 3, 355–360 (1985), https://doi.org/https://doi.org/10.1007/BF01755921. V. M. Finkel’ and N. I. Alyushina, “Mechanisms of crack initiation and fracture of the surface of crystals of lithium fluoride and calcite in pulsed thermal loading,” Strength Mater., 17, No. 3, 355–360 (1985), https://​doi.​org/​https://​doi.​org/​10.​1007/​BF01755921.
10.
Zurück zum Zitat G. N. Tret’yachenko and B. S. Karpinos, “Mechanical and thermophysical characteristics of materials in fracture,” Strength Mater., 21, No. 9, 1146–1152 (1989), https://doi.org/https://doi.org/10.1007/BF01529287. G. N. Tret’yachenko and B. S. Karpinos, “Mechanical and thermophysical characteristics of materials in fracture,” Strength Mater., 21, No. 9, 1146–1152 (1989), https://​doi.​org/​https://​doi.​org/​10.​1007/​BF01529287.
11.
Zurück zum Zitat H. Nied and F. Erdogan, “Transient thermal stress problem for a circumferentially cracked hollow cylinder,” J. Therm. Stresses, 6, No. 1, 1–14 (1983).CrossRef H. Nied and F. Erdogan, “Transient thermal stress problem for a circumferentially cracked hollow cylinder,” J. Therm. Stresses, 6, No. 1, 1–14 (1983).CrossRef
12.
Zurück zum Zitat K. Jayadevan, “Critical stress intensity factors for cracked hollow pipes under transient thermal loads,” J. Therm. Stresses, 25, No. 10, 951–968 (2002).CrossRef K. Jayadevan, “Critical stress intensity factors for cracked hollow pipes under transient thermal loads,” J. Therm. Stresses, 25, No. 10, 951–968 (2002).CrossRef
13.
Zurück zum Zitat R. Ghajar and S. Nabavi, “Closed-form thermal stress intensity factors for an internal circumferential crack in a thick-walled cylinder,” Fatigue Fract. Eng. Mater. Struct., 33, No. 8, 504–512 (2010).CrossRef R. Ghajar and S. Nabavi, “Closed-form thermal stress intensity factors for an internal circumferential crack in a thick-walled cylinder,” Fatigue Fract. Eng. Mater. Struct., 33, No. 8, 504–512 (2010).CrossRef
14.
Zurück zum Zitat H. Nied, “Thermal shock in an edge-cracked plate subjected to uniform surface heating,” Eng. Fract. Mech., 26, No. 2, 239–246 (1987).CrossRef H. Nied, “Thermal shock in an edge-cracked plate subjected to uniform surface heating,” Eng. Fract. Mech., 26, No. 2, 239–246 (1987).CrossRef
15.
Zurück zum Zitat S. L. Guo, B. L. Wang, and J. E. Li, “Surface thermal shock fracture and thermal crack growth behavior of thin plates based on dual-phase-lag heat conduction,” Theor. Appl. Fract. Mech., 96, 105–113 (2018).CrossRef S. L. Guo, B. L. Wang, and J. E. Li, “Surface thermal shock fracture and thermal crack growth behavior of thin plates based on dual-phase-lag heat conduction,” Theor. Appl. Fract. Mech., 96, 105–113 (2018).CrossRef
16.
Zurück zum Zitat N. Naotake and A. Fumihiro, “Thermal shock in a transversely isotropic cylinder containing an annular crack,” Int. J. Solids Struct., 30, No. 3, 427–440 (1993).CrossRef N. Naotake and A. Fumihiro, “Thermal shock in a transversely isotropic cylinder containing an annular crack,” Int. J. Solids Struct., 30, No. 3, 427–440 (1993).CrossRef
17.
Zurück zum Zitat D. M. Chang, X. F. Liu, B. L. Wang, et al., “Non-Fourier thermal shock fracture of solids with shallow semi-elliptical surface crack,” Theor. Appl. Fract. Mech., 96, 160–167 (2018).CrossRef D. M. Chang, X. F. Liu, B. L. Wang, et al., “Non-Fourier thermal shock fracture of solids with shallow semi-elliptical surface crack,” Theor. Appl. Fract. Mech., 96, 160–167 (2018).CrossRef
18.
Zurück zum Zitat N. Noda and F. Ashida, “Stress intensity factor for transient thermal stresses in a transversely isotropic infinite body with an external circular crack,” Acta Mech., 66, No. 1, 217–231 (1987).CrossRef N. Noda and F. Ashida, “Stress intensity factor for transient thermal stresses in a transversely isotropic infinite body with an external circular crack,” Acta Mech., 66, No. 1, 217–231 (1987).CrossRef
19.
Zurück zum Zitat L. M. Chen, J. W. Fu, and L. F. Qian, “On the non-Fourier thermal fracture of an edge-cracked cylindrical bar,” Theor. Appl. Fract. Mech., 80, 218–225 (2015).CrossRef L. M. Chen, J. W. Fu, and L. F. Qian, “On the non-Fourier thermal fracture of an edge-cracked cylindrical bar,” Theor. Appl. Fract. Mech., 80, 218–225 (2015).CrossRef
20.
Zurück zum Zitat H. Jia and Y. Nie, “Thermoelastic analysis of multiple defects with the extended finite element method,” Acta Mech. Sin., 32, No. 6, 1123–1137 (2016).CrossRef H. Jia and Y. Nie, “Thermoelastic analysis of multiple defects with the extended finite element method,” Acta Mech. Sin., 32, No. 6, 1123–1137 (2016).CrossRef
21.
Zurück zum Zitat N. Soltani, M. Alembagheri, and M. H. Khaneghahi, “Risk-based probabilistic thermal-stress analysis of concrete arch dams,” Front. Struct. Civ. Eng., 13, No. 5, 1007–1019 (2019).CrossRef N. Soltani, M. Alembagheri, and M. H. Khaneghahi, “Risk-based probabilistic thermal-stress analysis of concrete arch dams,” Front. Struct. Civ. Eng., 13, No. 5, 1007–1019 (2019).CrossRef
22.
Zurück zum Zitat J. Fu, Z. Chen, L. Qian, and Y. Xu, “Non-Fourier thermoelastic behavior of a hollow cylinder with an embedded or edge circumferential crack,” Eng. Fract. Mech., 128, 103–120 (2014).CrossRef J. Fu, Z. Chen, L. Qian, and Y. Xu, “Non-Fourier thermoelastic behavior of a hollow cylinder with an embedded or edge circumferential crack,” Eng. Fract. Mech., 128, 103–120 (2014).CrossRef
23.
Zurück zum Zitat J. Fu, Z. Chen, L. Qian, and K. Hu, “Transient thermoelastic analysis of a solid cylinder containing a circumferential crack using the C–V heat conduction model,” J. Therm. Stresses, 37, No. 11, 1324–1345 (2014).CrossRef J. Fu, Z. Chen, L. Qian, and K. Hu, “Transient thermoelastic analysis of a solid cylinder containing a circumferential crack using the C–V heat conduction model,” J. Therm. Stresses, 37, No. 11, 1324–1345 (2014).CrossRef
24.
Zurück zum Zitat D. Y. Tzou, “Three dimensional structures of the thermal shock waves around a rapidly moving heat source,” Int. J. Eng. Sci., 28, No. 10, 1003–1017 (1990).CrossRef D. Y. Tzou, “Three dimensional structures of the thermal shock waves around a rapidly moving heat source,” Int. J. Eng. Sci., 28, No. 10, 1003–1017 (1990).CrossRef
25.
Zurück zum Zitat J. J. Mason and A. J. Rosakis, “On the dependence of the dynamic crack tip temperature fields in metals upon crack tip velocity and material parameters,” Mech. Mater., 16, No. 4, 337–350 (1993).CrossRef J. J. Mason and A. J. Rosakis, “On the dependence of the dynamic crack tip temperature fields in metals upon crack tip velocity and material parameters,” Mech. Mater., 16, No. 4, 337–350 (1993).CrossRef
26.
Zurück zum Zitat J. J. Mason and A. J. Rosakis, “The effects of hyperbolic heat conduction around a dynamically propagating crack tip,” Mech. Mater., 15, No. 4, 263–278 (1993).CrossRef J. J. Mason and A. J. Rosakis, “The effects of hyperbolic heat conduction around a dynamically propagating crack tip,” Mech. Mater., 15, No. 4, 263–278 (1993).CrossRef
27.
Zurück zum Zitat A. Amani Dashlejeh, “Isogeometric analysis of coupled thermo-elastodynamic problems under cyclic thermal shock,” Front. Struct. Civ. Eng., 13, No. 2, 397–405 (2019).CrossRef A. Amani Dashlejeh, “Isogeometric analysis of coupled thermo-elastodynamic problems under cyclic thermal shock,” Front. Struct. Civ. Eng., 13, No. 2, 397–405 (2019).CrossRef
28.
Zurück zum Zitat D. Chang and B. Wang, “Transient thermal fracture and crack growth behavior in brittle media based on non-Fourier heat conduction,” Eng. Fract. Mech., 94, 29–36 (2012).CrossRef D. Chang and B. Wang, “Transient thermal fracture and crack growth behavior in brittle media based on non-Fourier heat conduction,” Eng. Fract. Mech., 94, 29–36 (2012).CrossRef
29.
Zurück zum Zitat B. Wang and J. Han, “Fracture mechanics associated with non-classical heat conduction in thermoelastic media,” Sci. China Phys. Mech. Astron., 55, No. 3, 493–504 (2012).CrossRef B. Wang and J. Han, “Fracture mechanics associated with non-classical heat conduction in thermoelastic media,” Sci. China Phys. Mech. Astron., 55, No. 3, 493–504 (2012).CrossRef
30.
Zurück zum Zitat B. L. Wang, “Transient thermal cracking associated with non-classical heat conduction in cylindrical coordinate system,” Acta Mech. Sin., 29, No. 2, 211–218 (2013).CrossRef B. L. Wang, “Transient thermal cracking associated with non-classical heat conduction in cylindrical coordinate system,” Acta Mech. Sin., 29, No. 2, 211–218 (2013).CrossRef
Metadaten
Titel
Effect of Higher-Order Terms in the Thermal Transient Stress Intensity Factor for a Cracked Semi-Infinite Medium Under Thermal Shock
verfasst von
M. Fakoor
S. Sotoudeh
Publikationsdatum
06.09.2022
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 3/2022
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-022-00427-x

Weitere Artikel der Ausgabe 3/2022

Strength of Materials 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.