Skip to main content
Erschienen in: Strength of Materials 6/2019

13.02.2020

Cold Cracking Resistance of Butt Joints in High-Strength Steels with Different Welding Techniques

verfasst von: V. D. Poznyakov, L. I. Markashova, V. D. Shelyagin, S. L. Zhdanov, A. V. Bernats’kyi, O. M. Berdnikova, V. M. Sydorets’

Erschienen in: Strength of Materials | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Investigation results are presented to improve the structural strength (cold crocking resistance) of weld joints in high-strength steels with the yield limit over 600 MPa. The effect of arc, laser, and hybrid laser-arc welding conditions on the weld metal structure and diffusion hydrogen saturation of build-up and fused base metals was experimentally studied. The diffusion hydrogen saturation of build-up (arc and hybrid welding) and fused (laser welding) metals was chromatographically examined. In gas-shielded arc welding, the diffusion hydrogen content in the fused base metal was shown to be limited to the concentration that does not exceed 0.4 ml/100 g due to an increase in the welding speed from 18 to 50 m/h. In laser and hybrid laser-arc welding of high-strength steels with the yield limit over 600 MPa, the diffusion hydrogen content in the fused metal makes up 0.07 and 0.2–0.3 ml/100 g, respectively, regardless of the welding speed. The cold cracking resistance was evaluated by a commonly accepted procedure of special reference butt samples. Optical and transmission microscopic studies permitted of revealing the effect of arc, laser, and hybrid laser-arc welding conditions on the weld metal structure and gaining detailed information on the dislocation density distribution. The relation between the level of local internal stresses and the structural factors of dislocation density distribution in the weld metal was established. In arc and laser welding, local internal stresses were shown to be reduced to the values that do not exceed 0.22 of the theoretical metal strength if the welding speed would make up 50 m/h. In hybrid laser-arc welding at 72–110 m/h, maximum local internal stresses are also less than 0.22 of the theoretical metal strength. An increase in the cold cracking resistance in butt weld joints of high-strength 14KhGN2MD and N-A-XTRA-70 steels was established to be reached due to a low concentration of diffusion hydrogen in fused metal and formation of the fine-grained structure of lower bainite with the uniform dislocation density distribution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. D. Poznyakov, “Welding technologies for the manufacture and repair of metallic structures from high-strength steels,” Visn. NAN Ukrainy, No. 1, 64–72 (2017). V. D. Poznyakov, “Welding technologies for the manufacture and repair of metallic structures from high-strength steels,” Visn. NAN Ukrainy, No. 1, 64–72 (2017).
2.
Zurück zum Zitat S. Ragu Nathan, V. Balasubramanian, S. Malarvizhi, et al., “Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy naval grade steel joints,” Defence Technol., 11, No. 3, 308–317 (2015).CrossRef S. Ragu Nathan, V. Balasubramanian, S. Malarvizhi, et al., “Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy naval grade steel joints,” Defence Technol., 11, No. 3, 308–317 (2015).CrossRef
3.
Zurück zum Zitat G. Magudeeswaran, V. Balasubramanian, and G. Madhusudhan Reddy, “Cold cracking of flux cored arc welded high strength steel weldments,” J. Mater. Sci. Technol., 25, No. 4, 516–526 (2009). G. Magudeeswaran, V. Balasubramanian, and G. Madhusudhan Reddy, “Cold cracking of flux cored arc welded high strength steel weldments,” J. Mater. Sci. Technol., 25, No. 4, 516–526 (2009).
4.
Zurück zum Zitat N. Mukai and R. Suzuki, “Research on the effects of welding-wire-related factors affecting diffusible hydrogen content,” Q. J. Japan Weld. Soc., 35, No. 2, 102–109 (2017).CrossRef N. Mukai and R. Suzuki, “Research on the effects of welding-wire-related factors affecting diffusible hydrogen content,” Q. J. Japan Weld. Soc., 35, No. 2, 102–109 (2017).CrossRef
5.
Zurück zum Zitat Y. Mikami, N. Kawabe, N. Ishikawa, and M. Mochizuki, “Evaluation of cold cracking in high-strength steel weld metal based on local critical conditions incorporating stress and diffusible hydrogen distributions,” Q. J. Japan Weld. Soc., 34, No. 2, 67–80 (2016).CrossRef Y. Mikami, N. Kawabe, N. Ishikawa, and M. Mochizuki, “Evaluation of cold cracking in high-strength steel weld metal based on local critical conditions incorporating stress and diffusible hydrogen distributions,” Q. J. Japan Weld. Soc., 34, No. 2, 67–80 (2016).CrossRef
6.
Zurück zum Zitat G. O. Kasatkin, “Hyrogen embrittlement mechanisms in high-strength steels on welding,” Avtomat. Svarka, No. 1, 3–7 (1994). G. O. Kasatkin, “Hyrogen embrittlement mechanisms in high-strength steels on welding,” Avtomat. Svarka, No. 1, 3–7 (1994).
7.
Zurück zum Zitat N. Ishikawa, H. Sueyoshi, H. Suzuki, and K. Akita, “Critical condition for hydrogen induced cold cracking of 980 MPa class weld metal,” Q. J. Japan Weld. Soc., 29, No. 3, 218–224 (2011).CrossRef N. Ishikawa, H. Sueyoshi, H. Suzuki, and K. Akita, “Critical condition for hydrogen induced cold cracking of 980 MPa class weld metal,” Q. J. Japan Weld. Soc., 29, No. 3, 218–224 (2011).CrossRef
8.
Zurück zum Zitat T. Kasuya, “Cold cracking susceptibility of steel welds and its prevention,” J. Japan Weld. Soc., 70, No. 6, 650–658 (2001).CrossRef T. Kasuya, “Cold cracking susceptibility of steel welds and its prevention,” J. Japan Weld. Soc., 70, No. 6, 650–658 (2001).CrossRef
9.
Zurück zum Zitat O. P. Ostach and V. S. Vytvyts’kyi, “Duality of the action of hydrogen on the mechanical behaviour of steels and structural optimization of their hydrogen resistance,” Mater. Sci., 47, No. 4, 421–437 (2012).CrossRef O. P. Ostach and V. S. Vytvyts’kyi, “Duality of the action of hydrogen on the mechanical behaviour of steels and structural optimization of their hydrogen resistance,” Mater. Sci., 47, No. 4, 421–437 (2012).CrossRef
10.
Zurück zum Zitat D. C. Ahn, P. Sofronis, and R. H. Dodds, “On hydrogen-induced plastic flow localization during void growth and coalescence,” Int. J. Hydrogen Energ., 32, No. 16, 3734–3742 (2007).CrossRef D. C. Ahn, P. Sofronis, and R. H. Dodds, “On hydrogen-induced plastic flow localization during void growth and coalescence,” Int. J. Hydrogen Energ., 32, No. 16, 3734–3742 (2007).CrossRef
11.
Zurück zum Zitat T. Kasuya, “Hydrogen in steel and cold cracking susceptibility,” J. Japan Weld. Soc., 82, No. 8, 569–593 (2013).CrossRef T. Kasuya, “Hydrogen in steel and cold cracking susceptibility,” J. Japan Weld. Soc., 82, No. 8, 569–593 (2013).CrossRef
12.
Zurück zum Zitat Y. Liang, P. Sofronis, and R. H. Dodds, “Interaction of hydrogen with crack-tip plasticity: effect of constraint on void growth,” Mater. Sci. Eng., 366, No. 2, 397–411 (2004).CrossRef Y. Liang, P. Sofronis, and R. H. Dodds, “Interaction of hydrogen with crack-tip plasticity: effect of constraint on void growth,” Mater. Sci. Eng., 366, No. 2, 397–411 (2004).CrossRef
13.
Zurück zum Zitat I. K. Pokhodnya and V. I. Shvachko, “Physical nature of hydrogen-related cold cracks in the weld joints of high-strength structural steels,” Avtomat. Svarka, No. 5, 3–10 (1997). I. K. Pokhodnya and V. I. Shvachko, “Physical nature of hydrogen-related cold cracks in the weld joints of high-strength structural steels,” Avtomat. Svarka, No. 5, 3–10 (1997).
14.
Zurück zum Zitat J. Ćwiek, “Hydrogen degradation of high strength weldable steels,” J. Achiev. Mater. Manufact. Eng., 20, Nos. 1–2, 223–226 (2007). J. Ćwiek, “Hydrogen degradation of high strength weldable steels,” J. Achiev. Mater. Manufact. Eng., 20, Nos. 1–2, 223–226 (2007).
15.
Zurück zum Zitat P. L. Moore, D. S. Howse, and E. R. Wallach, “Microstructures and properties of laser/arc hybrid welds and autogenous laser welds in pipeline steels,” Sci. Technol. Weld. Joi., 9, No. 4, 314–322 (2004).CrossRef P. L. Moore, D. S. Howse, and E. R. Wallach, “Microstructures and properties of laser/arc hybrid welds and autogenous laser welds in pipeline steels,” Sci. Technol. Weld. Joi., 9, No. 4, 314–322 (2004).CrossRef
16.
Zurück zum Zitat P. Kah, A. Salminen, and J. Martikainen, “Laser-arc hybrid welding processes,” The Paton Welding J., No. 6, 32–40 (2010). P. Kah, A. Salminen, and J. Martikainen, “Laser-arc hybrid welding processes,” The Paton Welding J., No. 6, 32–40 (2010).
17.
Zurück zum Zitat M. Atabaki, J. Ma, G. Yang, and R. Kovacevic, “Hybrid laser/arc welding of advanced high strength steel in different butt joint configurations,” Mater. Design, 64, 573–587 (2014).CrossRef M. Atabaki, J. Ma, G. Yang, and R. Kovacevic, “Hybrid laser/arc welding of advanced high strength steel in different butt joint configurations,” Mater. Design, 64, 573–587 (2014).CrossRef
18.
Zurück zum Zitat X. Y. Gu, Z. Z. Duan, X. P. Gu, et al., “Microstructure and mechanical properties of laser-mag hybrid welded thick-section weathered steel joint,” Int. J. Adv. Manuf. Technol., 81, No. 5, 825–831 (2015).CrossRef X. Y. Gu, Z. Z. Duan, X. P. Gu, et al., “Microstructure and mechanical properties of laser-mag hybrid welded thick-section weathered steel joint,” Int. J. Adv. Manuf. Technol., 81, No. 5, 825–831 (2015).CrossRef
19.
Zurück zum Zitat V. D. Poznyakov, V. D. Shelyagin, S. L. Zhdanov, et al., “Laser-arc welding of high-strength steels with yield strength of more than 700 MPa,” The Paton Welding J., No. 10, 19–24 (2015). V. D. Poznyakov, V. D. Shelyagin, S. L. Zhdanov, et al., “Laser-arc welding of high-strength steels with yield strength of more than 700 MPa,” The Paton Welding J., No. 10, 19–24 (2015).
20.
Zurück zum Zitat V. Pozniakov, L. Markashova, O. Berdnikova, et al., “Structure and crack resistance of N-A-XTRA-70 steel joints manufactured by hybrid laser-arc welding,” Mater. Sci. Forum, 927, 29–34 (2018).CrossRef V. Pozniakov, L. Markashova, O. Berdnikova, et al., “Structure and crack resistance of N-A-XTRA-70 steel joints manufactured by hybrid laser-arc welding,” Mater. Sci. Forum, 927, 29–34 (2018).CrossRef
21.
Zurück zum Zitat O. Berdnikova, V. Poznyakov, and O. Bushma, “Laser and hybrid laser-arc welding of high strength steel N-A-XTRA-70,” Mater. Sci. Forum, 870, 630–635 (2016).CrossRef O. Berdnikova, V. Poznyakov, and O. Bushma, “Laser and hybrid laser-arc welding of high strength steel N-A-XTRA-70,” Mater. Sci. Forum, 870, 630–635 (2016).CrossRef
22.
Zurück zum Zitat O. Berdnikova, V. Sydorets, and T. Alekseienko, “Structure and properties of laser-welded joints from high-strength steels,” Appl. Mech. Mater., 682, 240–245 (2014).CrossRef O. Berdnikova, V. Sydorets, and T. Alekseienko, “Structure and properties of laser-welded joints from high-strength steels,” Appl. Mech. Mater., 682, 240–245 (2014).CrossRef
23.
Zurück zum Zitat V. D. Poznyakov, V. D. Shelyagin, S. L. Zhdanov, et al., “Comparative evaluation of properties of high-strength N-A-XTRA-70 steel welded joints produced using arc, laser and hybrid laser-arc method,” The Paton Welding J., Nos. 5–6, 114–116 (2016). V. D. Poznyakov, V. D. Shelyagin, S. L. Zhdanov, et al., “Comparative evaluation of properties of high-strength N-A-XTRA-70 steel welded joints produced using arc, laser and hybrid laser-arc method,” The Paton Welding J., Nos. 5–6, 114–116 (2016).
24.
Zurück zum Zitat X. Cao, P. Wanjara, J. Huang, et al., “Hybrid fiber laser-arc welding of thick section high strength low alloy steel,” Mater. Design, 32, No. 6, 3399–3413 (2011).CrossRef X. Cao, P. Wanjara, J. Huang, et al., “Hybrid fiber laser-arc welding of thick section high strength low alloy steel,” Mater. Design, 32, No. 6, 3399–3413 (2011).CrossRef
25.
Zurück zum Zitat V. Shelyagin, V. Khaskin, A. Bernatskyi, et al., “Multi-pass laser and hybrid laser-arc narrow-gap welding of steel butt joints,” Mater. Sci. Forum, 927, 64–71 (2018).CrossRef V. Shelyagin, V. Khaskin, A. Bernatskyi, et al., “Multi-pass laser and hybrid laser-arc narrow-gap welding of steel butt joints,” Mater. Sci. Forum, 927, 64–71 (2018).CrossRef
26.
Zurück zum Zitat I. K. Pokhodnya, A. P. Pal’tsevich, and I. R. Yavdoshin, “Effect of weld metal sampling methods on the assessment of mobile diffusion hydrogen contents,” Avtomat. Svarka, No. 1, 24–28 (1986). I. K. Pokhodnya, A. P. Pal’tsevich, and I. R. Yavdoshin, “Effect of weld metal sampling methods on the assessment of mobile diffusion hydrogen contents,” Avtomat. Svarka, No. 1, 24–28 (1986).
27.
Zurück zum Zitat A. P. Pal’tsevich, “Chromatographic method of detecting hydrogen contents in electrode coating components,” Avtomat. Svarka, No. 6, 46–48 (1999). A. P. Pal’tsevich, “Chromatographic method of detecting hydrogen contents in electrode coating components,” Avtomat. Svarka, No. 6, 46–48 (1999).
28.
Zurück zum Zitat A. N. Stroh, “The formation of cracks as a recoil of plastic flow,” P. Roy. Soc. A-Math. Phy., 223, No. 1154, 404–415 (1954). A. N. Stroh, “The formation of cracks as a recoil of plastic flow,” P. Roy. Soc. A-Math. Phy., 223, No. 1154, 404–415 (1954).
29.
Zurück zum Zitat V. E. Panin, V. A. Likhachev, and Yu. V. Grinyaev, Structural Levels of Solid Deformation [in Russian], Nauka, Novosibirsk (1985). V. E. Panin, V. A. Likhachev, and Yu. V. Grinyaev, Structural Levels of Solid Deformation [in Russian], Nauka, Novosibirsk (1985).
30.
Zurück zum Zitat H. Conrad, “Effect of grain size on the lower yield and flow stress of iron and steel,” Acta Met., 11, No. 1, 75–77 (1963).CrossRef H. Conrad, “Effect of grain size on the lower yield and flow stress of iron and steel,” Acta Met., 11, No. 1, 75–77 (1963).CrossRef
31.
Zurück zum Zitat A. V. Stepanov, Physical Nature of Brittle Fracture. Cold Brittleness of Steel and Steel Structures [in Russian], Nauka, Novosibirsk (1971). A. V. Stepanov, Physical Nature of Brittle Fracture. Cold Brittleness of Steel and Steel Structures [in Russian], Nauka, Novosibirsk (1971).
32.
Zurück zum Zitat A. H. Cottrell, “Theoretical aspects of fracture,” in: B. L. Averbach, B. K. Felbeck, G. T. Hahn, and D. A. Thomas (Eds.), Fracture: Proceedings of an International Conference on the Atomic Mechanisms of Fracture held in Swampscott, MA, April 12–16, 1959, Wiley (1959). A. H. Cottrell, “Theoretical aspects of fracture,” in: B. L. Averbach, B. K. Felbeck, G. T. Hahn, and D. A. Thomas (Eds.), Fracture: Proceedings of an International Conference on the Atomic Mechanisms of Fracture held in Swampscott, MA, April 12–16, 1959, Wiley (1959).
33.
Zurück zum Zitat V. S. Ivanova, L. K. Gordienko, and V. N. Geminova, Role of Dislocations in Hardening and Fracture of Metals [in Russian], Nauka, Moscow (1965). V. S. Ivanova, L. K. Gordienko, and V. N. Geminova, Role of Dislocations in Hardening and Fracture of Metals [in Russian], Nauka, Moscow (1965).
34.
Zurück zum Zitat E. Orowan, “Classical and disclocation theories of brittle fracture,” in: B. L. Averbach, B. K. Felbeck, G. T. Hahn, and D. A. Thomas (Eds.), Fracture: Proceedings of an International Conference on the Atomic Mechanisms of Fracture held in Swampscott, MA, April 12–16, 1959, Wiley (1959). E. Orowan, “Classical and disclocation theories of brittle fracture,” in: B. L. Averbach, B. K. Felbeck, G. T. Hahn, and D. A. Thomas (Eds.), Fracture: Proceedings of an International Conference on the Atomic Mechanisms of Fracture held in Swampscott, MA, April 12–16, 1959, Wiley (1959).
35.
Zurück zum Zitat G. T. Hahn, B. L. Averbach, W. S. Owen, and M. Cohen, “Initiation of cleavage microcrack in polycrystalline iron and steel,” B. L. Averbach, B. K. Felbeck, G. T. Hahn, and D. A. Thomas (Eds.), Fracture: Proceedings of an International Conference on the Atomic Mechanisms of Fracture held in Swampscott, MA, April 12–16, 1959, Wiley (1959). G. T. Hahn, B. L. Averbach, W. S. Owen, and M. Cohen, “Initiation of cleavage microcrack in polycrystalline iron and steel,” B. L. Averbach, B. K. Felbeck, G. T. Hahn, and D. A. Thomas (Eds.), Fracture: Proceedings of an International Conference on the Atomic Mechanisms of Fracture held in Swampscott, MA, April 12–16, 1959, Wiley (1959).
36.
Zurück zum Zitat J. P. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill, New York (1967). J. P. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill, New York (1967).
37.
Zurück zum Zitat A. Ya. Krasovskii, Physical Strength Grounds [in Russian], Naukova Dumka, Kiev (1977). A. Ya. Krasovskii, Physical Strength Grounds [in Russian], Naukova Dumka, Kiev (1977).
38.
Zurück zum Zitat S. A. Kotrechko and Yu. Ya. Meshkov, Ultimate Strength. Crystals, Metals, Structures [in Russian], Naukova Dumka, Kiev (2008). S. A. Kotrechko and Yu. Ya. Meshkov, Ultimate Strength. Crystals, Metals, Structures [in Russian], Naukova Dumka, Kiev (2008).
39.
Zurück zum Zitat V. I. Trefilov, F. F. Moiseev, É. P. Pechkovskii, et al., Strain Hardening and Fracture of Polycrystalline Metals [in Russian], Naukova Dumka, Kiev (1987). V. I. Trefilov, F. F. Moiseev, É. P. Pechkovskii, et al., Strain Hardening and Fracture of Polycrystalline Metals [in Russian], Naukova Dumka, Kiev (1987).
Metadaten
Titel
Cold Cracking Resistance of Butt Joints in High-Strength Steels with Different Welding Techniques
verfasst von
V. D. Poznyakov
L. I. Markashova
V. D. Shelyagin
S. L. Zhdanov
A. V. Bernats’kyi
O. M. Berdnikova
V. M. Sydorets’
Publikationsdatum
13.02.2020
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 6/2019
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-020-00132-7

Weitere Artikel der Ausgabe 6/2019

Strength of Materials 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.