Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 1/2015

01.02.2015

A Mathematical Modeling Study of Tracer Mixing in a Continuous Casting Tundish

verfasst von: Chao Chen, Lage Tord Ingemar Jonsson, Anders Tilliander, Guoguang Cheng, Pär Göran Jönsson

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A mathematical model based on a water model was developed to study the tracer mixing in a single strand tundish. The mixing behavior of black ink and KCl solution was simulated by a mixed composition fluid model, and the data were validated by water modeling results. In addition, a model that solves the scalar transport equation (STE) without any physical properties of the tracer was studied and the results were compared to predictions using the density-coupled model. Furthermore, the mixing behaviors of different amounts of KCl tracers were investigated. Before the model was established, KCl tracer properties such as the KCl molecule diffusion (KMD), the water molecule self-diffusion (WSD) in KCl solution, and the KCl solution viscosity (KV) were evaluated. The RTD curve of 250 mL KCl for the KMD case was closer to the water modeling results than that of the case implemented with only density. Moreover, the ensemble average deviation of the RTD curves of the cases implemented with KMD + WSD, KMD + KV, and KMD + WSD + KV to the KMD case is less than 0.7 pct. Thus, the water self-diffusion and KV were neglected, while the KCl density and KMD were implemented in the current study. The flow pattern of black ink was similar to the STE result i.e., the fluid flowed upwards toward the top surface and formed a large circulating flow at the outlet nozzle. The flow behavior of the 100, 150, and 250 mL KCl cases exhibited a strong tendency to sink to the tundish bottom, and subsequently flow through the holes in the dam. Thereafter, it propagated toward the outlet nozzle. Regarding the KCl tracer amount, the tracer concentration propagated to the outlet nozzle much faster for the larger amount case than for the smaller amount cases. However, the flow pattern for the 50 mL KCl case was somewhat different. The fluid propagated to the top surface which acted like black ink during the initial injection, and subsequently the fluid flowed throughout the holes at a much slower pace. The breakthrough time and peak concentration of RTD curves of model predictions and water modeling results showed a good agreement (all difference within 12.5 pct) for the 100, 150, and 250 mL KCl cases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Mazumdar and R.I.L. Guthrie: ISIJ Int., 1999, vol. 39, no. 6, pp. 524-547.CrossRef D. Mazumdar and R.I.L. Guthrie: ISIJ Int., 1999, vol. 39, no. 6, pp. 524-547.CrossRef
2.
3.
Zurück zum Zitat E.B. Nauman: in Handbook of Industrial Mixing: Science and Practice, Chap. 1, E.L. Paul, V.A. Atiemo-Obeng, and S.M. Kresta, eds., Wiley, New Jersey, 2004, pp. 1–17. E.B. Nauman: in Handbook of Industrial Mixing: Science and Practice, Chap. 1, E.L. Paul, V.A. Atiemo-Obeng, and S.M. Kresta, eds., Wiley, New Jersey, 2004, pp. 1–17.
4.
Zurück zum Zitat J. Szekely, and O.J. Ilegbusi: The Physical and Mathematical Modeling of Tundish Operations, pp. 36–52, Springer, Berlin, 1989.CrossRef J. Szekely, and O.J. Ilegbusi: The Physical and Mathematical Modeling of Tundish Operations, pp. 36–52, Springer, Berlin, 1989.CrossRef
6.
Zurück zum Zitat Y. He and Y. Sahai: Metall. Trans. B, 1987, vol. 18B, no. 1, pp. 81-92.CrossRef Y. He and Y. Sahai: Metall. Trans. B, 1987, vol. 18B, no. 1, pp. 81-92.CrossRef
7.
Zurück zum Zitat J.L. Yeh, W.S. Hwang and C.L. Chou: J. Mater. Eng. Perform., 1992, vol. 1, no. 5, pp. 625–36. J.L. Yeh, W.S. Hwang and C.L. Chou: J. Mater. Eng. Perform., 1992, vol. 1, no. 5, pp. 625–36.
8.
Zurück zum Zitat A. Vassilicos, and A.K. Sinha: 10th Process Technol. Conf. Proc., Toronto, I&S Society, April 5–8, 1992, pp. 187–207. A. Vassilicos, and A.K. Sinha: 10th Process Technol. Conf. Proc., Toronto, I&S Society, April 5–8, 1992, pp. 187–207.
9.
10.
11.
Zurück zum Zitat A. Robert and D. Mazumdar: Steel Res. Int., 2001, vol. 72, no. 3, pp. 97-105. A. Robert and D. Mazumdar: Steel Res. Int., 2001, vol. 72, no. 3, pp. 97-105.
12.
Zurück zum Zitat S. López-Ramirez, J.de J. Barreto, J. Palafox-Ramos, R.D. Morales and D. Zacharias: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 615–27. S. López-Ramirez, J.de J. Barreto, J. Palafox-Ramos, R.D. Morales and D. Zacharias: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 615–27.
13.
Zurück zum Zitat T.S. Ahn, K.H. Lee, K.H. Lee, and H.S. Park. Int. Conf. Numer. Anal. Appl. Math., American Institute of Physics, 2007, pp. 41–44. T.S. Ahn, K.H. Lee, K.H. Lee, and H.S. Park. Int. Conf. Numer. Anal. Appl. Math., American Institute of Physics, 2007, pp. 41–44.
14.
Zurück zum Zitat R. Koitzsch, H.J. Odenthal and H. Pfeifer: Steel Res. Int., 2007, vol. 78, no. 6, pp. 473-481. R. Koitzsch, H.J. Odenthal and H. Pfeifer: Steel Res. Int., 2007, vol. 78, no. 6, pp. 473-481.
15.
Zurück zum Zitat C. Chen, G. Cheng, H. Sun, Z. Hou, X. Wang and J. Zhang: Steel Res. Int., 2012, vol. 83, no. 12, pp. 1141-1151.CrossRef C. Chen, G. Cheng, H. Sun, Z. Hou, X. Wang and J. Zhang: Steel Res. Int., 2012, vol. 83, no. 12, pp. 1141-1151.CrossRef
16.
Zurück zum Zitat C. Chen, Q. Rui and G. Cheng: Steel Res. Int., 2013, vol. 84, no. 9, pp. 900-907.CrossRef C. Chen, Q. Rui and G. Cheng: Steel Res. Int., 2013, vol. 84, no. 9, pp. 900-907.CrossRef
18.
Zurück zum Zitat B.E. Launder and D.B. Spalding: Comp. Meth. Appl. Mech. Eng., 1974, vol. 3(2), pp. 269–89. B.E. Launder and D.B. Spalding: Comp. Meth. Appl. Mech. Eng., 1974, vol. 3(2), pp. 269–89.
19.
Zurück zum Zitat P.K. Jha and S.K. Dash: Int. J. Num. Methods Heat Fluid Flow, 2004, vol. 14(8), pp. 953–79. P.K. Jha and S.K. Dash: Int. J. Num. Methods Heat Fluid Flow, 2004, vol. 14(8), pp. 953–79.
20.
Zurück zum Zitat C.E. Grip, L. Jonsson and P.G. Jönsson: ISIJ Int., 1997, vol. 37, no. 11, pp. 1081-1090.CrossRef C.E. Grip, L. Jonsson and P.G. Jönsson: ISIJ Int., 1997, vol. 37, no. 11, pp. 1081-1090.CrossRef
22.
Zurück zum Zitat G. Jones and M. Dole: J. Am. Chem. Soc., 1929, vol. 51, pp. 2950-2964.CrossRef G. Jones and M. Dole: J. Am. Chem. Soc., 1929, vol. 51, pp. 2950-2964.CrossRef
23.
Zurück zum Zitat CRC Handbook of Chemistry and Physics, 93rd ed., W.M. Haynes, ed., CRC Press, 2012, pp. 5–137. [Original data from: O. Söhnel and P. Novotny: Densities of Aqueous Solutions of Inorganic Substances, Elsevier, Amsterdam 1985.] CRC Handbook of Chemistry and Physics, 93rd ed., W.M. Haynes, ed., CRC Press, 2012, pp. 5–137. [Original data from: O. Söhnel and P. Novotny: Densities of Aqueous Solutions of Inorganic Substances, Elsevier, Amsterdam 1985.]
24.
Zurück zum Zitat P. Vanýsek: in CRC Handbook of Chemistry and Physics, 93rd ed., W.M. Haynes, ed., CRC Press, 2012, pp. 5–77. P. Vanýsek: in CRC Handbook of Chemistry and Physics, 93rd ed., W.M. Haynes, ed., CRC Press, 2012, pp. 5–77.
25.
Zurück zum Zitat S. Lee, H.Y. Lee, I.F. Lee and C.Y. Tseng: Eur. J. Phys., 2004, vol. 25, no. 2, pp. 331-336.CrossRef S. Lee, H.Y. Lee, I.F. Lee and C.Y. Tseng: Eur. J. Phys., 2004, vol. 25, no. 2, pp. 331-336.CrossRef
26.
Zurück zum Zitat K. Tanaka: J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condens. Phases, 1975, vol. 71, pp. 1127–31. K. Tanaka: J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condens. Phases, 1975, vol. 71, pp. 1127–31.
27.
Zurück zum Zitat H. Falkenhagen and E.L. Vernon: Phil. Mag. J. Sci., 1932, vol. 14, no. 9, pp. 537-565.CrossRef H. Falkenhagen and E.L. Vernon: Phil. Mag. J. Sci., 1932, vol. 14, no. 9, pp. 537-565.CrossRef
28.
Zurück zum Zitat L. Onsager and R.M. Fuoss: J. Phys. Chem., 1932, vol. 36, no. 11, pp. 2689-2778.CrossRef L. Onsager and R.M. Fuoss: J. Phys. Chem., 1932, vol. 36, no. 11, pp. 2689-2778.CrossRef
29.
Zurück zum Zitat M.M. Lencka, A. Anderko, S.J. Sanders and R.D. Young: Int. J. Thermophys., 1998, vol. 19(2), pp. 367–78. M.M. Lencka, A. Anderko, S.J. Sanders and R.D. Young: Int. J. Thermophys., 1998, vol. 19(2), pp. 367–78.
30.
Zurück zum Zitat H.L. Zhang and S.J. Han: J. Chem. Eng. Data, 1996, vol. 41, no. 3, pp. 516-520.CrossRef H.L. Zhang and S.J. Han: J. Chem. Eng. Data, 1996, vol. 41, no. 3, pp. 516-520.CrossRef
31.
Zurück zum Zitat PHOENICS-VR Reference Guide, in CHAM TR 326, CHAM, London, 2012. PHOENICS-VR Reference Guide, in CHAM TR 326, CHAM, London, 2012.
32.
Zurück zum Zitat P.H. Gaskell and A.K.C. Lau: Int. J. Num. Methods Fluids, 1988, vol. 8(6), pp. 617–41. P.H. Gaskell and A.K.C. Lau: Int. J. Num. Methods Fluids, 1988, vol. 8(6), pp. 617–41.
33.
Zurück zum Zitat S.V. Patankar and D.B. Spalding: Int. J. Heat Mass Transfer, 1972, vol. 15, no. 10, pp. 1787-1806.CrossRef S.V. Patankar and D.B. Spalding: Int. J. Heat Mass Transfer, 1972, vol. 15, no. 10, pp. 1787-1806.CrossRef
34.
Zurück zum Zitat H.K. Versteeg and W. Malalasekera: An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed., Pearson Education, London, 2007, p. 307. H.K. Versteeg and W. Malalasekera: An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed., Pearson Education, London, 2007, p. 307.
35.
Zurück zum Zitat P.J. Roache: Ann. Rev. Fluid Mech., 1998, vol. 29, no. 1, pp. 123-160.CrossRef P.J. Roache: Ann. Rev. Fluid Mech., 1998, vol. 29, no. 1, pp. 123-160.CrossRef
36.
Zurück zum Zitat W.Merzkirch: Flow Visualization, 2nd ed., Academic Press, Orlando, Florida, 1987, p. 18. W.Merzkirch: Flow Visualization, 2nd ed., Academic Press, Orlando, Florida, 1987, p. 18.
38.
Zurück zum Zitat W. Geng. The Algorithms and Principles of Non-photorealistic Graphics, Zhejiang University Press & Springer, Hangzhou & Berlin, 2010, p. 48. W. Geng. The Algorithms and Principles of Non-photorealistic Graphics, Zhejiang University Press & Springer, Hangzhou & Berlin, 2010, p. 48.
39.
Zurück zum Zitat R.J. Wang and C.M. Wang: J. Info. Sci. Eng., 2010, vol. 26, no. 4, pp. 1397–1411. R.J. Wang and C.M. Wang: J. Info. Sci. Eng., 2010, vol. 26, no. 4, pp. 1397–1411.
40.
Zurück zum Zitat Y. Sahai and R. Ahuja: Ironmak. Steelmak., 1986, vol. 13(5), pp. 241–47. Y. Sahai and R. Ahuja: Ironmak. Steelmak., 1986, vol. 13(5), pp. 241–47.
Metadaten
Titel
A Mathematical Modeling Study of Tracer Mixing in a Continuous Casting Tundish
verfasst von
Chao Chen
Lage Tord Ingemar Jonsson
Anders Tilliander
Guoguang Cheng
Pär Göran Jönsson
Publikationsdatum
01.02.2015
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 1/2015
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-014-0190-0

Weitere Artikel der Ausgabe 1/2015

Metallurgical and Materials Transactions B 1/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.