Skip to main content
Erschienen in: Acta Mechanica 1/2020

27.09.2019 | Original Paper

A model for the tensile modulus of polymer nanocomposites assuming carbon nanotube networks and interphase zones

verfasst von: Yasser Zare, Kyong Yop Rhee, Soo-Jin Park

Erschienen in: Acta Mechanica | Ausgabe 1/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we develop a conventional model for the tensile modulus of polymer/carbon nanotube (CNT) nanocomposites that assumes the stiffening and percolating effects of the interphase between polymer matrix and CNTs. The developed model expresses the modulus using the radius and length of the CNTs as well as the thickness, volume fraction, aspect ratio and modulus of the interphase. Similarly, the percolation volume fractions of the nanoparticles \((\phi _\mathrm{p})\) and interphase regions \((\phi _\mathrm{pi} )\) are inversely linked to the aspect ratio as a ratio of length to diameter. The predictions generated from the developed model are compared with many experimental results, and the roles of the model’s parameters are studied. The calculations show good agreement with the experimental results in the samples that include the percolating network and interphase, while an overprediction is observed in the samples without them. The ideal effects of long and thin CNTs as well as thick and strong interphase on the reinforcing and percolating efficiencies of the interphase are described in detail. The modulus shows an improvement of less than 20% at \(\phi _\mathrm{p} > 0.0055\) and \(\phi _\mathrm{pi} > 0.0025\), while the highest relative modulus of 2.4 is obtained with the minimal values of these parameters (\(\phi _\mathrm{p} = 0.002\) and \(\phi _\mathrm{pi} = 0.001\)).
Literatur
1.
Zurück zum Zitat Omidinia, E., Naghib, S.M., Boughdachi, A., Khoshkenar, P., Mills, D.K.: Hybridization of silver nanoparticles and reduced graphene nanosheets into a nanocomposite for highly sensitive L-phenylalanine biosensing. Int. J. Electrochem. Sci. 10(8), 6833–43 (2015) Omidinia, E., Naghib, S.M., Boughdachi, A., Khoshkenar, P., Mills, D.K.: Hybridization of silver nanoparticles and reduced graphene nanosheets into a nanocomposite for highly sensitive L-phenylalanine biosensing. Int. J. Electrochem. Sci. 10(8), 6833–43 (2015)
2.
Zurück zum Zitat Askari, E., Naghib, S.M.: A novel approach to facile synthesis and biosensing of the protein-regulated graphene. Int. J. Electrochem. Sci. 13(1), 886–97 (2018) Askari, E., Naghib, S.M.: A novel approach to facile synthesis and biosensing of the protein-regulated graphene. Int. J. Electrochem. Sci. 13(1), 886–97 (2018)
3.
Zurück zum Zitat Sadeghi, A., Moeini, R., Yeganeh, J.K.: Highly conductive PP/PET polymer blends with high electromagnetic interference shielding performances in the presence of thermally reduced graphene nanosheets prepared through melt compounding. Polym. Compos. 40, E1461–E1469 (2019) Sadeghi, A., Moeini, R., Yeganeh, J.K.: Highly conductive PP/PET polymer blends with high electromagnetic interference shielding performances in the presence of thermally reduced graphene nanosheets prepared through melt compounding. Polym. Compos. 40, E1461–E1469 (2019)
4.
Zurück zum Zitat Farahi, A., Najafpour, G.D., Ghoreyshi, A.: Enhanced ethanol separation by corona-modified surface MWCNT composite PDMS/PES. PVP membrane. JOM 71(1), 285–93 (2019) Farahi, A., Najafpour, G.D., Ghoreyshi, A.: Enhanced ethanol separation by corona-modified surface MWCNT composite PDMS/PES. PVP membrane. JOM 71(1), 285–93 (2019)
5.
Zurück zum Zitat Kalkhoran, A.H.Z., Vahidi, O., Naghib, S.M.: A new mathematical approach to predict the actual drug release from hydrogels. Eur. J. Pharm. Sci. 111, 303–10 (2018) Kalkhoran, A.H.Z., Vahidi, O., Naghib, S.M.: A new mathematical approach to predict the actual drug release from hydrogels. Eur. J. Pharm. Sci. 111, 303–10 (2018)
6.
Zurück zum Zitat Naghib, S.M., Parnian, E., Keshvari, H., Omidinia, E., Eshghan-Malek, M.: Synthesis, characterization and electrochemical evaluation of polyvinylalchol/graphene oxide/silver nanocomposites for glucose biosensing application. Int. J. Electrochem. Sci. 13(1), 1013–26 (2018) Naghib, S.M., Parnian, E., Keshvari, H., Omidinia, E., Eshghan-Malek, M.: Synthesis, characterization and electrochemical evaluation of polyvinylalchol/graphene oxide/silver nanocomposites for glucose biosensing application. Int. J. Electrochem. Sci. 13(1), 1013–26 (2018)
7.
Zurück zum Zitat Kalkhoran, A.H.Z., Naghib, S.M., Vahidi, O., Rahmanian, M.: Synthesis and characterization of graphene-grafted gelatin nanocomposite hydrogels as emerging drug delivery systems. Biomed. Phys. Eng. Express 4(5), 055017 (2018) Kalkhoran, A.H.Z., Naghib, S.M., Vahidi, O., Rahmanian, M.: Synthesis and characterization of graphene-grafted gelatin nanocomposite hydrogels as emerging drug delivery systems. Biomed. Phys. Eng. Express 4(5), 055017 (2018)
8.
Zurück zum Zitat Javidi, Z., Tarashi, Z., Rostami, A., Nazockdast, H.: Role of nanosilica localization on morphology development of HDPE/PS/PMMA immiscible ternary blends. eXPRESS Polym. Lett. 11(5), 362–373 (2017) Javidi, Z., Tarashi, Z., Rostami, A., Nazockdast, H.: Role of nanosilica localization on morphology development of HDPE/PS/PMMA immiscible ternary blends. eXPRESS Polym. Lett. 11(5), 362–373 (2017)
9.
Zurück zum Zitat Zare, Y., Rhee, K.Y.: Following the morphological and thermal properties of PLA/PEO blends containing carbon nanotubes (CNTs) during hydrolytic degradation. Compos. Part B Eng. 175, 107132 (2019) Zare, Y., Rhee, K.Y.: Following the morphological and thermal properties of PLA/PEO blends containing carbon nanotubes (CNTs) during hydrolytic degradation. Compos. Part B Eng. 175, 107132 (2019)
10.
Zurück zum Zitat Bahaadini, R., Saidi, A.R., Hosseini, M.: Dynamic stability of fluid-conveying thin-walled rotating pipes reinforced with functionally graded carbon nanotubes. Acta Mech. 229(12), 5013–29 (2018)MathSciNet Bahaadini, R., Saidi, A.R., Hosseini, M.: Dynamic stability of fluid-conveying thin-walled rotating pipes reinforced with functionally graded carbon nanotubes. Acta Mech. 229(12), 5013–29 (2018)MathSciNet
11.
Zurück zum Zitat Van Tung, H.: Imperfection and tangential edge constraint sensitivities of thermomechanical nonlinear response of pressure-loaded carbon nanotube-reinforced composite cylindrical panels. Acta Mech. 229(5), 1949–69 (2018)MathSciNet Van Tung, H.: Imperfection and tangential edge constraint sensitivities of thermomechanical nonlinear response of pressure-loaded carbon nanotube-reinforced composite cylindrical panels. Acta Mech. 229(5), 1949–69 (2018)MathSciNet
12.
Zurück zum Zitat Koutsoumaris, C.C., Eptaimeros, K.: A research into bi-Helmholtz type of nonlocal elasticity and a direct approach to Eringen’s nonlocal integral model in a finite body. Acta Mech. 229(9), 3629–49 (2018)MathSciNetMATH Koutsoumaris, C.C., Eptaimeros, K.: A research into bi-Helmholtz type of nonlocal elasticity and a direct approach to Eringen’s nonlocal integral model in a finite body. Acta Mech. 229(9), 3629–49 (2018)MathSciNetMATH
13.
Zurück zum Zitat Korobeynikov, S., Alyokhin, V., Babichev, A.: Simulation of mechanical parameters of graphene using the DREIDING force field. Acta Mech. 229(6), 2343–78 (2018)MathSciNet Korobeynikov, S., Alyokhin, V., Babichev, A.: Simulation of mechanical parameters of graphene using the DREIDING force field. Acta Mech. 229(6), 2343–78 (2018)MathSciNet
14.
Zurück zum Zitat Kundalwal, S., Choyal, V.: Transversely isotropic elastic properties of carbon nanotubes containing vacancy defects using MD. Acta Mech. 229(6), 2571–284 (2018) Kundalwal, S., Choyal, V.: Transversely isotropic elastic properties of carbon nanotubes containing vacancy defects using MD. Acta Mech. 229(6), 2571–284 (2018)
15.
Zurück zum Zitat Kothari, R., Kundalwal, S., Sahu, S.: Transversely isotropic thermal properties of carbon nanotubes containing vacancies. Acta Mech. 229(7), 2787–800 (2018) Kothari, R., Kundalwal, S., Sahu, S.: Transversely isotropic thermal properties of carbon nanotubes containing vacancies. Acta Mech. 229(7), 2787–800 (2018)
16.
Zurück zum Zitat Swain, A., Roy, T.: Viscoelastic modeling and vibration damping characteristics of hybrid CNTs-CFRP composite shell structures. Acta Mech. 229(3), 1321–52 (2018)MathSciNet Swain, A., Roy, T.: Viscoelastic modeling and vibration damping characteristics of hybrid CNTs-CFRP composite shell structures. Acta Mech. 229(3), 1321–52 (2018)MathSciNet
17.
Zurück zum Zitat Shkolnik, K., Chalivendra, V.: Numerical studies of electrical contacts of carbon nanotubes-embedded epoxy under tensile loading. Acta Mech. 229(1), 99–107 (2018) Shkolnik, K., Chalivendra, V.: Numerical studies of electrical contacts of carbon nanotubes-embedded epoxy under tensile loading. Acta Mech. 229(1), 99–107 (2018)
18.
Zurück zum Zitat Zare, Y., Rhee, K.Y.: Expression of normal stress difference and relaxation modulus for ternary nanocomposites containing biodegradable polymers and carbon nanotubes by storage and loss modulus data. Compos. Part B Eng. 158, 162–168 (2019) Zare, Y., Rhee, K.Y.: Expression of normal stress difference and relaxation modulus for ternary nanocomposites containing biodegradable polymers and carbon nanotubes by storage and loss modulus data. Compos. Part B Eng. 158, 162–168 (2019)
19.
Zurück zum Zitat Zare, Y., Garmabi, H., Rhee, K.Y.: Structural and phase separation characterization of poly (lactic acid)/poly (ethylene oxide)/carbon nanotube nanocomposites by rheological examinations. Compos. Part B Eng. 144, 1–10 (2018) Zare, Y., Garmabi, H., Rhee, K.Y.: Structural and phase separation characterization of poly (lactic acid)/poly (ethylene oxide)/carbon nanotube nanocomposites by rheological examinations. Compos. Part B Eng. 144, 1–10 (2018)
20.
Zurück zum Zitat Zare, Y., Rhee, K.Y.: Modeling of viscosity and complex modulus for poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites assuming yield stress and network breaking time. Compos. Part B Eng. 156, 100–7 (2019) Zare, Y., Rhee, K.Y.: Modeling of viscosity and complex modulus for poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites assuming yield stress and network breaking time. Compos. Part B Eng. 156, 100–7 (2019)
21.
Zurück zum Zitat Kumar, B., Castro, M., Feller, J.-F.: Poly (lactic acid)-multi-wall carbon nanotube conductive biopolymer nanocomposite vapour sensors. Sens. Actuators B Chem. 161(1), 621–8 (2012) Kumar, B., Castro, M., Feller, J.-F.: Poly (lactic acid)-multi-wall carbon nanotube conductive biopolymer nanocomposite vapour sensors. Sens. Actuators B Chem. 161(1), 621–8 (2012)
22.
Zurück zum Zitat Rostami, A., Nazockdast, H., Karimi, M.: Graphene induced microstructural changes of PLA/MWCNT biodegradable nanocomposites: rheological, morphological, thermal and electrical properties. RSC Adv. 6(55), 49747–59 (2016) Rostami, A., Nazockdast, H., Karimi, M.: Graphene induced microstructural changes of PLA/MWCNT biodegradable nanocomposites: rheological, morphological, thermal and electrical properties. RSC Adv. 6(55), 49747–59 (2016)
23.
Zurück zum Zitat Rostami, A., Vahdati, M., Nazockdast, H.: Unraveling the localization behavior of MWCNTs in binary polymer blends using thermodynamics and viscoelastic approaches. Polym. Compos. 39(7), 2356–67 (2018) Rostami, A., Vahdati, M., Nazockdast, H.: Unraveling the localization behavior of MWCNTs in binary polymer blends using thermodynamics and viscoelastic approaches. Polym. Compos. 39(7), 2356–67 (2018)
24.
Zurück zum Zitat Khoramishad, H., Khakzad, M., Fasihi, M.: The effect of outer diameter of multi-walled carbon nanotubes on fracture behavior of epoxy adhesives. Sci. Iran. Trans. B Mech. Eng. 24(6), 2952–62 (2017) Khoramishad, H., Khakzad, M., Fasihi, M.: The effect of outer diameter of multi-walled carbon nanotubes on fracture behavior of epoxy adhesives. Sci. Iran. Trans. B Mech. Eng. 24(6), 2952–62 (2017)
25.
Zurück zum Zitat Zare, Y., Fasihi, M., Rhee, K.Y.: Efficiency of stress transfer between polymer matrix and nanoplatelets in clay/polymer nanocomposites. Appl. Clay Sci. 143, 265–72 (2017) Zare, Y., Fasihi, M., Rhee, K.Y.: Efficiency of stress transfer between polymer matrix and nanoplatelets in clay/polymer nanocomposites. Appl. Clay Sci. 143, 265–72 (2017)
26.
Zurück zum Zitat Zare, Y., Rhee, K.Y.: Multistep modeling of Young’s modulus in polymer/clay nanocomposites assuming the intercalation/exfoliation of clay layers and the interphase between polymer matrix and nanoparticles. Compos. Part A Appl. Sci. Manuf. 102, 137–44 (2017) Zare, Y., Rhee, K.Y.: Multistep modeling of Young’s modulus in polymer/clay nanocomposites assuming the intercalation/exfoliation of clay layers and the interphase between polymer matrix and nanoparticles. Compos. Part A Appl. Sci. Manuf. 102, 137–44 (2017)
27.
Zurück zum Zitat Zare, Y., Rhee, K.Y.: A power model to predict the electrical conductivity of CNT reinforced nanocomposites by considering interphase, networks and tunneling condition. Compos. Part B Eng. 155, 11–18 (2018) Zare, Y., Rhee, K.Y.: A power model to predict the electrical conductivity of CNT reinforced nanocomposites by considering interphase, networks and tunneling condition. Compos. Part B Eng. 155, 11–18 (2018)
28.
Zurück zum Zitat Zare, Y., Rhim, S., Garmabi, H., Rhee, K.Y.: A simple model for constant storage modulus of poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites at low frequencies assuming the properties of interphase regions and networks. J. Mech. Behav. Biomed. Mater. 80, 164–170 (2018) Zare, Y., Rhim, S., Garmabi, H., Rhee, K.Y.: A simple model for constant storage modulus of poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites at low frequencies assuming the properties of interphase regions and networks. J. Mech. Behav. Biomed. Mater. 80, 164–170 (2018)
29.
Zurück zum Zitat Zare, Y., Garmabi, H., Rhee, K.Y.: Prediction of complex modulus in phase-separated poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites. Polym. Test. 66, 189–194 (2018) Zare, Y., Garmabi, H., Rhee, K.Y.: Prediction of complex modulus in phase-separated poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites. Polym. Test. 66, 189–194 (2018)
30.
Zurück zum Zitat Kundalwal, S., Ray, M.: Effect of carbon nanotube waviness on the elastic properties of the fuzzy fiber reinforced composites. J. Appl. Mech. 80(2), 021010 (2013) Kundalwal, S., Ray, M.: Effect of carbon nanotube waviness on the elastic properties of the fuzzy fiber reinforced composites. J. Appl. Mech. 80(2), 021010 (2013)
31.
Zurück zum Zitat Kundalwal, S., Meguid, S.: Micromechanics modelling of the effective thermoelastic response of nano-tailored composites. Eur. J. Mech. A/Solids 53, 241–53 (2015)MathSciNetMATH Kundalwal, S., Meguid, S.: Micromechanics modelling of the effective thermoelastic response of nano-tailored composites. Eur. J. Mech. A/Solids 53, 241–53 (2015)MathSciNetMATH
32.
Zurück zum Zitat Kundalwal, S., Kumar, S.: Multiscale modeling of stress transfer in continuous microscale fiber reinforced composites with nano-engineered interphase. Mech. Mater. 102, 117–31 (2016) Kundalwal, S., Kumar, S.: Multiscale modeling of stress transfer in continuous microscale fiber reinforced composites with nano-engineered interphase. Mech. Mater. 102, 117–31 (2016)
33.
Zurück zum Zitat Zare, Y., Rhee, K.Y.: Expansion of Kolarik model for tensile strength of polymer particulate nanocomposites as a function of matrix, nanoparticles and interphase properties. J. Colloid Interface Sci. 506, 582–8 (2017) Zare, Y., Rhee, K.Y.: Expansion of Kolarik model for tensile strength of polymer particulate nanocomposites as a function of matrix, nanoparticles and interphase properties. J. Colloid Interface Sci. 506, 582–8 (2017)
34.
Zurück zum Zitat Zare, Y., Rhee, K.Y., Park, S.-J.: A modeling methodology to investigate the effect of interfacial adhesion on the yield strength of MMT reinforced nanocomposites. J. Ind. Eng. Chem. 69, 331–337 (2018) Zare, Y., Rhee, K.Y., Park, S.-J.: A modeling methodology to investigate the effect of interfacial adhesion on the yield strength of MMT reinforced nanocomposites. J. Ind. Eng. Chem. 69, 331–337 (2018)
35.
Zurück zum Zitat Bartczak, Z., Argon, A., Cohen, R., Weinberg, M.: Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles. Polymer 40(9), 2347–65 (1999) Bartczak, Z., Argon, A., Cohen, R., Weinberg, M.: Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles. Polymer 40(9), 2347–65 (1999)
36.
Zurück zum Zitat Favier, V., Cavaille, J., Canova, G., Shrivastava, S.: Mechanical percolation in cellulose whisker nanocomposites. Polym. Eng. Sci. 37(10), 1732–9 (1997) Favier, V., Cavaille, J., Canova, G., Shrivastava, S.: Mechanical percolation in cellulose whisker nanocomposites. Polym. Eng. Sci. 37(10), 1732–9 (1997)
37.
Zurück zum Zitat Razavi, R., Zare, Y., Rhee, K.Y.: A two-step model for the tunneling conductivity of polymer carbon nanotube nanocomposites assuming the conduction of interphase regions. RSC Adv. 7(79), 50225–33 (2017) Razavi, R., Zare, Y., Rhee, K.Y.: A two-step model for the tunneling conductivity of polymer carbon nanotube nanocomposites assuming the conduction of interphase regions. RSC Adv. 7(79), 50225–33 (2017)
38.
Zurück zum Zitat Liu, Z., Peng, W., Zare, Y., Hui, D., Rhee, K.Y.: Predicting the electrical conductivity in polymer carbon nanotube nanocomposites based on the volume fractions and resistances of the nanoparticle, interphase, and tunneling regions in conductive networks. RSC Adv. 8(34), 19001–10 (2018) Liu, Z., Peng, W., Zare, Y., Hui, D., Rhee, K.Y.: Predicting the electrical conductivity in polymer carbon nanotube nanocomposites based on the volume fractions and resistances of the nanoparticle, interphase, and tunneling regions in conductive networks. RSC Adv. 8(34), 19001–10 (2018)
39.
Zurück zum Zitat Zare, Y., Rhee, K.Y.: Simplification and development of McLachlan model for electrical conductivity of polymer carbon nanotubes nanocomposites assuming the networking of interphase regions. Compos. Part B Eng. 156, 64–71 (2019) Zare, Y., Rhee, K.Y.: Simplification and development of McLachlan model for electrical conductivity of polymer carbon nanotubes nanocomposites assuming the networking of interphase regions. Compos. Part B Eng. 156, 64–71 (2019)
40.
Zurück zum Zitat Baxter, S.C., Robinson, C.T.: Pseudo-percolation: critical volume fractions and mechanical percolation in polymer nanocomposites. Compos. Sci. Technol. 71(10), 1273–9 (2011) Baxter, S.C., Robinson, C.T.: Pseudo-percolation: critical volume fractions and mechanical percolation in polymer nanocomposites. Compos. Sci. Technol. 71(10), 1273–9 (2011)
41.
Zurück zum Zitat Nikfar, N., Zare, Y., Rhee, K.Y.: Dependence of mechanical performances of polymer/carbon nanotubes nanocomposites on percolation threshold. Phys. B Condens. Matter 533, 69–75 (2018) Nikfar, N., Zare, Y., Rhee, K.Y.: Dependence of mechanical performances of polymer/carbon nanotubes nanocomposites on percolation threshold. Phys. B Condens. Matter 533, 69–75 (2018)
42.
Zurück zum Zitat Qiao, R., Brinson, L.C.: Simulation of interphase percolation and gradients in polymer nanocomposites. Compos. Sci. Technol. 69(3), 491–9 (2009) Qiao, R., Brinson, L.C.: Simulation of interphase percolation and gradients in polymer nanocomposites. Compos. Sci. Technol. 69(3), 491–9 (2009)
43.
Zurück zum Zitat Wang, Y., Weng, G.J., Meguid, S.A., Hamouda, A.M.: A continuum model with a percolation threshold and tunneling-assisted interfacial conductivity for carbon nanotube-based nanocomposites. J. Appl. Phys. 115(19), 193706 (2014) Wang, Y., Weng, G.J., Meguid, S.A., Hamouda, A.M.: A continuum model with a percolation threshold and tunneling-assisted interfacial conductivity for carbon nanotube-based nanocomposites. J. Appl. Phys. 115(19), 193706 (2014)
44.
Zurück zum Zitat Wang, Y., Shan, J.W., Weng, G.J.: Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling. J. Appl. Phys. 118(6), 065101 (2015) Wang, Y., Shan, J.W., Weng, G.J.: Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling. J. Appl. Phys. 118(6), 065101 (2015)
45.
Zurück zum Zitat Lyngaae-Jorgensen, J., Kuta, A., Sondergaard, K., Poulsen, K.V.: Structure and properties of polymer blends with dual phase continuity. Polym. Netw. Blends 3, 1–13 (1993) Lyngaae-Jorgensen, J., Kuta, A., Sondergaard, K., Poulsen, K.V.: Structure and properties of polymer blends with dual phase continuity. Polym. Netw. Blends 3, 1–13 (1993)
46.
Zurück zum Zitat Sandler, J., Kirk, J., Kinloch, I., Shaffer, M., Windle, A.: Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19), 5893–9 (2003) Sandler, J., Kirk, J., Kinloch, I., Shaffer, M., Windle, A.: Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19), 5893–9 (2003)
47.
Zurück zum Zitat Grunlan, J.C., Mehrabi, A.R., Bannon, M.V., Bahr, J.L.: Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold. Adv. Mater. 16(2), 150–3 (2004) Grunlan, J.C., Mehrabi, A.R., Bannon, M.V., Bahr, J.L.: Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold. Adv. Mater. 16(2), 150–3 (2004)
48.
Zurück zum Zitat Ji, X.L., Jiao, K.J., Jiang, W., Jiang, B.Z.: Tensile modulus of polymer nanocomposites. Polym. Eng. Sci. 42(5), 983 (2002) Ji, X.L., Jiao, K.J., Jiang, W., Jiang, B.Z.: Tensile modulus of polymer nanocomposites. Polym. Eng. Sci. 42(5), 983 (2002)
49.
Zurück zum Zitat Chatterjee, A.P.: A model for the elastic moduli of three-dimensional fiber networks and nanocomposites. J. Appl. Phys. 100(5), 054302 (2006) Chatterjee, A.P.: A model for the elastic moduli of three-dimensional fiber networks and nanocomposites. J. Appl. Phys. 100(5), 054302 (2006)
50.
Zurück zum Zitat Roumeli, E., Pavlidou, E., Bikiaris, D., Chrissafis, K.: Microscopic observation and micromechanical modeling to predict the enhanced mechanical properties of multi-walled carbon nanotubes reinforced crosslinked high density polyethylene. Carbon 67, 475–87 (2014) Roumeli, E., Pavlidou, E., Bikiaris, D., Chrissafis, K.: Microscopic observation and micromechanical modeling to predict the enhanced mechanical properties of multi-walled carbon nanotubes reinforced crosslinked high density polyethylene. Carbon 67, 475–87 (2014)
51.
Zurück zum Zitat Chen, G.-X., Kim, H.-S., Park, B.H., Yoon, J.-S.: Multi-walled carbon nanotubes reinforced nylon 6 composites. Polymer 47(13), 4760–7 (2006) Chen, G.-X., Kim, H.-S., Park, B.H., Yoon, J.-S.: Multi-walled carbon nanotubes reinforced nylon 6 composites. Polymer 47(13), 4760–7 (2006)
52.
Zurück zum Zitat Dufresne, A., Paillet, M., Putaux, J., Canet, R., Carmona, F., Delhaes, P., et al.: Processing and characterization of carbon nanotube/poly (styrene-co-butyl acrylate) nanocomposites. J. Mater. Sci. 37(18), 3915–23 (2002) Dufresne, A., Paillet, M., Putaux, J., Canet, R., Carmona, F., Delhaes, P., et al.: Processing and characterization of carbon nanotube/poly (styrene-co-butyl acrylate) nanocomposites. J. Mater. Sci. 37(18), 3915–23 (2002)
53.
Zurück zum Zitat Zou, W., Du, Z-j, Liu, Y-x, Yang, X., Li, H-q, Zhang, C.: Functionalization of MWNTs using polyacryloyl chloride and the properties of CNT-epoxy matrix nanocomposites. Compos. Sci. Technol. 68(15), 3259–64 (2008) Zou, W., Du, Z-j, Liu, Y-x, Yang, X., Li, H-q, Zhang, C.: Functionalization of MWNTs using polyacryloyl chloride and the properties of CNT-epoxy matrix nanocomposites. Compos. Sci. Technol. 68(15), 3259–64 (2008)
54.
Zurück zum Zitat Pontefisso, A., Zappalorto, M., Quaresimin, M.: Influence of interphase and filler distribution on the elastic properties of nanoparticle filled polymers. Mech. Res. Commun. 52, 92–4 (2013) Pontefisso, A., Zappalorto, M., Quaresimin, M.: Influence of interphase and filler distribution on the elastic properties of nanoparticle filled polymers. Mech. Res. Commun. 52, 92–4 (2013)
55.
Zurück zum Zitat Koysuren, O., Karaman, M., Ozyurt, D.: Effect of noncovalent chemical modification on the electrical conductivity and tensile properties of poly (methyl methacrylate)/carbon nanotube composites. J. Appl. Polym. Sci. 127(6), 4557–63 (2013) Koysuren, O., Karaman, M., Ozyurt, D.: Effect of noncovalent chemical modification on the electrical conductivity and tensile properties of poly (methyl methacrylate)/carbon nanotube composites. J. Appl. Polym. Sci. 127(6), 4557–63 (2013)
56.
Zurück zum Zitat Kuan, H.-C., Ma, C.-C.M., Chang, W.-P., Yuen, S.-M., Wu, H.-H., Lee, T.-M.: Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Compos. Sci. Technol. 65(11), 1703–10 (2005) Kuan, H.-C., Ma, C.-C.M., Chang, W.-P., Yuen, S.-M., Wu, H.-H., Lee, T.-M.: Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Compos. Sci. Technol. 65(11), 1703–10 (2005)
57.
Zurück zum Zitat Yan, D., Yang, G.: Synthesis and properties of homogeneously dispersed polyamide 6/MWNTs nanocomposites via simultaneous in situ anionic ring-opening polymerization and compatibilization. J. Appl. Polym. Sci. 112(6), 3620–6 (2009) Yan, D., Yang, G.: Synthesis and properties of homogeneously dispersed polyamide 6/MWNTs nanocomposites via simultaneous in situ anionic ring-opening polymerization and compatibilization. J. Appl. Polym. Sci. 112(6), 3620–6 (2009)
58.
Zurück zum Zitat Saeed, K., Park, S.Y.: Preparation of multiwalled carbon nanotube/nylon-6 nanocomposites by in situ polymerization. J. Appl. Polym. Sci. 106(6), 3729–35 (2007) Saeed, K., Park, S.Y.: Preparation of multiwalled carbon nanotube/nylon-6 nanocomposites by in situ polymerization. J. Appl. Polym. Sci. 106(6), 3729–35 (2007)
59.
Zurück zum Zitat Sevostianov, I., Kachanov, M.: Effect of interphase layers on the overall elastic and conductive properties of matrix composites. Applications to nanosize inclusion. Int. J. Solids Struct. 44(3), 1304–15 (2007)MATH Sevostianov, I., Kachanov, M.: Effect of interphase layers on the overall elastic and conductive properties of matrix composites. Applications to nanosize inclusion. Int. J. Solids Struct. 44(3), 1304–15 (2007)MATH
60.
Zurück zum Zitat Ayatollahi, M., Shadlou, S., Shokrieh, M., Chitsazzadeh, M.: Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites. Polym. Test. 30, 548–556 (2011) Ayatollahi, M., Shadlou, S., Shokrieh, M., Chitsazzadeh, M.: Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites. Polym. Test. 30, 548–556 (2011)
61.
Zurück zum Zitat Zare, Y., Rhee, K.Y.: Tensile strength prediction of carbon nanotube reinforced composites by expansion of cross-orthogonal skeleton structure. Compos. Part B Eng. 161, 601–7 (2019) Zare, Y., Rhee, K.Y.: Tensile strength prediction of carbon nanotube reinforced composites by expansion of cross-orthogonal skeleton structure. Compos. Part B Eng. 161, 601–7 (2019)
62.
Zurück zum Zitat Mortazavi, B., Bardon, J., Ahzi, S.: Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study. Comput. Mater. Sci. 69, 100–6 (2013) Mortazavi, B., Bardon, J., Ahzi, S.: Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study. Comput. Mater. Sci. 69, 100–6 (2013)
63.
Zurück zum Zitat Dominkovics, Z., Hári, J., Kovács, J., Fekete, E., Pukánszky, B.: Estimation of interphase thickness and properties in PP/layered silicate nanocomposites. Eur. Polym. J. 47(9), 1765–74 (2011) Dominkovics, Z., Hári, J., Kovács, J., Fekete, E., Pukánszky, B.: Estimation of interphase thickness and properties in PP/layered silicate nanocomposites. Eur. Polym. J. 47(9), 1765–74 (2011)
64.
Zurück zum Zitat Xu, X., Li, B., Lu, H., Zhang, Z., Wang, H.: The effect of the interface structure of different surface-modified nano-SiO\(_2\) on the mechanical properties of nylon 66 composites. J. Appl. Polym. Sci. 107(3), 2007–14 (2008) Xu, X., Li, B., Lu, H., Zhang, Z., Wang, H.: The effect of the interface structure of different surface-modified nano-SiO\(_2\) on the mechanical properties of nylon 66 composites. J. Appl. Polym. Sci. 107(3), 2007–14 (2008)
65.
Zurück zum Zitat Herasati, S., Zhang, L., Ruan, H.: A new method for characterizing the interphase regions of carbon nanotube composites. Int. J. Solids Struct. 51(9), 1781–91 (2014) Herasati, S., Zhang, L., Ruan, H.: A new method for characterizing the interphase regions of carbon nanotube composites. Int. J. Solids Struct. 51(9), 1781–91 (2014)
Metadaten
Titel
A model for the tensile modulus of polymer nanocomposites assuming carbon nanotube networks and interphase zones
verfasst von
Yasser Zare
Kyong Yop Rhee
Soo-Jin Park
Publikationsdatum
27.09.2019
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 1/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02504-w

Weitere Artikel der Ausgabe 1/2020

Acta Mechanica 1/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.