Skip to main content

2017 | OriginalPaper | Buchkapitel

A Neural Network Approach for Predicting the Diameters of Electrospun Polyvinylacetate (PVAc) Nanofibers

verfasst von : Cosimo Ieracitano, Fabiola Pantò, Patrizia Frontera, Francesco Carlo Morabito

Erschienen in: Engineering Applications of Neural Networks

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study focuses on the design of a Neural Network (NN) model for the prediction of interpolated values of polyvinylacetate (PVAc) nanofiber diameters produced by the electrospinning process and it supposes to be a preliminary work for future and industrial applications. The experimental data gathered from the literature form the basis for generating a more consistent sample through standard interpolation. The inputs of the NN are the polymer concentration, the applied voltage, the nozzle-collector distance and the flow rate parameters of the process, whereas the average diameter acts as the unique output of the network. The generated model is able to approximate the mapping between process parameters and fiber morphology, which is of practical importance to help prepare homogeneous nano-fibers. The reliability of the model was tested by 7-fold cross validation as well as leave-one-out method, showing good performance in terms of both average RMSE (0.109, corresponding to 138.51 nm) and correlation coefficient (0.905) between the desired and the predicted diameters when a White Gaussian Noise with 2% power (WGN2%) is applied to the interpolations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Huang, Z.-M., et al.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003)CrossRef Huang, Z.-M., et al.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003)CrossRef
2.
Zurück zum Zitat Persano, L., et al.: Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromol. Mater. Eng. 298(5), 504–520 (2013)MathSciNetCrossRef Persano, L., et al.: Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromol. Mater. Eng. 298(5), 504–520 (2013)MathSciNetCrossRef
3.
Zurück zum Zitat Pantò, F., Fan, Y., Frontera, P., Stelitano, S., Fazio, E., Patanè, S., Santangelo, S.: Are electrospun carbon/metal oxide composite fibers relevant electrodematerials for li-ion batteries? J. Electrochem. Soc. 163(14), A2930–A2937 (2016)CrossRef Pantò, F., Fan, Y., Frontera, P., Stelitano, S., Fazio, E., Patanè, S., Santangelo, S.: Are electrospun carbon/metal oxide composite fibers relevant electrodematerials for li-ion batteries? J. Electrochem. Soc. 163(14), A2930–A2937 (2016)CrossRef
4.
Zurück zum Zitat Haykin, S.: Neural networks: a comprehensive foundation. Neural Netw. 2(2004), 41 (2004) Haykin, S.: Neural networks: a comprehensive foundation. Neural Netw. 2(2004), 41 (2004)
5.
Zurück zum Zitat Carrera, D., et al.: Defect detection in SEM images of nanofibrous materials. IEEE Trans. Ind. Inform. 13(2), 551–561 (2017)CrossRef Carrera, D., et al.: Defect detection in SEM images of nanofibrous materials. IEEE Trans. Ind. Inform. 13(2), 551–561 (2017)CrossRef
6.
Zurück zum Zitat Borrotti, M., et al.: Defect minimization and feature control in electrospinning through design of experiments. J. Appl. Polym. Sci. 134(17), 44740(1 of 10), 44740(2 of 10), .., 44740(10 of 10) (2017) Borrotti, M., et al.: Defect minimization and feature control in electrospinning through design of experiments. J. Appl. Polym. Sci. 134(17), 44740(1 of 10), 44740(2 of 10), .., 44740(10 of 10) (2017)
7.
Zurück zum Zitat Sarkar, K., et al.: A neural network model for the numerical prediction of the diameter of electro-spun polyethylene oxide nanofibers. J. Mater. Process. Technol. 209(7), 3156–3165 (2009)CrossRef Sarkar, K., et al.: A neural network model for the numerical prediction of the diameter of electro-spun polyethylene oxide nanofibers. J. Mater. Process. Technol. 209(7), 3156–3165 (2009)CrossRef
8.
Zurück zum Zitat Mirzaei, E., et al.: Artificial neural networks modeling of electrospinning of polyethylene oxide from aqueous acid acetic solution. J. Appl. Polym. Sci. 125(3), 1910–1921 (2012)CrossRef Mirzaei, E., et al.: Artificial neural networks modeling of electrospinning of polyethylene oxide from aqueous acid acetic solution. J. Appl. Polym. Sci. 125(3), 1910–1921 (2012)CrossRef
9.
Zurück zum Zitat Faridi-Majidi, R., et al.: Use of artificial neural networks to determine parameters controlling the nanofibers diameter in electrospinning of nylon-6, 6. J. Appl. Polym. Sci. 124(2), 1589–1597 (2012)CrossRef Faridi-Majidi, R., et al.: Use of artificial neural networks to determine parameters controlling the nanofibers diameter in electrospinning of nylon-6, 6. J. Appl. Polym. Sci. 124(2), 1589–1597 (2012)CrossRef
10.
Zurück zum Zitat Naghibzadeh, M., Adabi, M.: Evaluation of effective electrospinning parameters controlling gelatin nanofibers diameter via modelling artificial neural networks. Fibers Polym. 15(4), 767–777 (2014)CrossRef Naghibzadeh, M., Adabi, M.: Evaluation of effective electrospinning parameters controlling gelatin nanofibers diameter via modelling artificial neural networks. Fibers Polym. 15(4), 767–777 (2014)CrossRef
11.
Zurück zum Zitat Vatankhah, E., et al.: Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds. Acta biomaterialia 10(2), 709–721 (2014)MathSciNetCrossRef Vatankhah, E., et al.: Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds. Acta biomaterialia 10(2), 709–721 (2014)MathSciNetCrossRef
12.
Zurück zum Zitat Pham, Q.P., Sharma, U., Mikos, A.G.: Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 12(5), 1197–1211 (2006)CrossRef Pham, Q.P., Sharma, U., Mikos, A.G.: Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 12(5), 1197–1211 (2006)CrossRef
13.
Zurück zum Zitat Karimi, M.A., et al.: Using an artificial neural network for the evaluation of the parameters controlling PVA/chitosan electrospun nanofibers diameter. e-Polym. 15(2), 127–138 (2015) Karimi, M.A., et al.: Using an artificial neural network for the evaluation of the parameters controlling PVA/chitosan electrospun nanofibers diameter. e-Polym. 15(2), 127–138 (2015)
15.
Zurück zum Zitat Brooks, H., Tucker, N.: Electrospinning predictions using artificial neural networks. Polymer 58, 22–29 (2015)CrossRef Brooks, H., Tucker, N.: Electrospinning predictions using artificial neural networks. Polymer 58, 22–29 (2015)CrossRef
16.
Zurück zum Zitat Nasouri, K., Shoushtari, A.M., Khamforoush, M.: Comparison between artificial neural network and response surface methodology in the prediction of the production rate of polyacrylonitrile electrospun nanofibers. Fibers Polym. 14(11), 1849–1856 (2013)CrossRef Nasouri, K., Shoushtari, A.M., Khamforoush, M.: Comparison between artificial neural network and response surface methodology in the prediction of the production rate of polyacrylonitrile electrospun nanofibers. Fibers Polym. 14(11), 1849–1856 (2013)CrossRef
17.
Zurück zum Zitat Nasouri, K., et al.: Modeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networks. J. Appl. Polym. Sci. 126(1), 127–135 (2012)CrossRef Nasouri, K., et al.: Modeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networks. J. Appl. Polym. Sci. 126(1), 127–135 (2012)CrossRef
18.
Zurück zum Zitat Khanlou, H.M., et al.: Prediction and optimization of electrospinning parameters for polymethyl methacrylate nanofiber fabrication using response surface methodology and artificial neural networks. Neural Comput. Appl. 25(3–4), 767–777 (2014)CrossRef Khanlou, H.M., et al.: Prediction and optimization of electrospinning parameters for polymethyl methacrylate nanofiber fabrication using response surface methodology and artificial neural networks. Neural Comput. Appl. 25(3–4), 767–777 (2014)CrossRef
19.
Zurück zum Zitat Rabbi, A., et al.: RSM and ANN approaches for modeling and optimizing of electrospun polyurethane nanofibers morphology. Fibers Polym. 13(8), 1007–1014 (2012)CrossRef Rabbi, A., et al.: RSM and ANN approaches for modeling and optimizing of electrospun polyurethane nanofibers morphology. Fibers Polym. 13(8), 1007–1014 (2012)CrossRef
20.
Zurück zum Zitat Nateri, A.S., Hasanzadeh, M.: Using fuzzy-logic and neural network techniques to evaluating polyacrylonitrile nanofiber diameter. J. Comput. Theor. Nanosci. 6(7), 1542–1545 (2009)CrossRef Nateri, A.S., Hasanzadeh, M.: Using fuzzy-logic and neural network techniques to evaluating polyacrylonitrile nanofiber diameter. J. Comput. Theor. Nanosci. 6(7), 1542–1545 (2009)CrossRef
21.
Zurück zum Zitat Son, W.K., et al.: The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly (ethylene oxide) fibers. Polymer 45(9), 2959–2966 (2004)CrossRef Son, W.K., et al.: The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly (ethylene oxide) fibers. Polymer 45(9), 2959–2966 (2004)CrossRef
22.
Zurück zum Zitat Yördem, O.S., Papila, M., Menceloğlu, Y.Z.: Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: an investigation by response surface methodology. Mater. Des. 29(1), 34–44 (2008)CrossRef Yördem, O.S., Papila, M., Menceloğlu, Y.Z.: Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: an investigation by response surface methodology. Mater. Des. 29(1), 34–44 (2008)CrossRef
23.
Zurück zum Zitat Ojha, S.S., et al.: Morphology of electrospun nylon-6 nanofibers as a function of molecular weight and processing parameters. J. Appl. Polym. Sci. 108(1), 308–319 (2008)MathSciNetCrossRef Ojha, S.S., et al.: Morphology of electrospun nylon-6 nanofibers as a function of molecular weight and processing parameters. J. Appl. Polym. Sci. 108(1), 308–319 (2008)MathSciNetCrossRef
24.
Zurück zum Zitat Park, J.Y., Lee, I.H., Bea, G.N.: Optimization of the electrospinning conditions for preparation of nanofibers from polyvinylacetate (PVAc) in ethanol solvent. J. Ind. Eng. Chem. 14(6), 707–713 (2008)CrossRef Park, J.Y., Lee, I.H., Bea, G.N.: Optimization of the electrospinning conditions for preparation of nanofibers from polyvinylacetate (PVAc) in ethanol solvent. J. Ind. Eng. Chem. 14(6), 707–713 (2008)CrossRef
25.
Zurück zum Zitat Garg, K., Bowlin, G.L.: Electrospinning jets and nanofibrous structures. Biomicrofluidics 5(1), 013403 (2011)CrossRef Garg, K., Bowlin, G.L.: Electrospinning jets and nanofibrous structures. Biomicrofluidics 5(1), 013403 (2011)CrossRef
26.
Zurück zum Zitat Ramakrishna, S.: An Introduction to Electrospinning and Nanofibers. World Scientific, Singapore (2005)CrossRef Ramakrishna, S.: An Introduction to Electrospinning and Nanofibers. World Scientific, Singapore (2005)CrossRef
27.
Zurück zum Zitat Chattopadhyay, R., Guha, A.: Artificialneural networks: applications to textiles. Textile Progress 35(1), 1–46 (2004)CrossRef Chattopadhyay, R., Guha, A.: Artificialneural networks: applications to textiles. Textile Progress 35(1), 1–46 (2004)CrossRef
28.
Zurück zum Zitat Morabito, F.C.: Independent component analysis and feature extraction techniques for NDT data. Mater. Eval. 58(1), 85–92 (2000) Morabito, F.C.: Independent component analysis and feature extraction techniques for NDT data. Mater. Eval. 58(1), 85–92 (2000)
29.
30.
Zurück zum Zitat Steyerberg, E.W., et al.: Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J. Clin. Epidemiol. 54(8), 774–781 (2001)CrossRef Steyerberg, E.W., et al.: Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J. Clin. Epidemiol. 54(8), 774–781 (2001)CrossRef
Metadaten
Titel
A Neural Network Approach for Predicting the Diameters of Electrospun Polyvinylacetate (PVAc) Nanofibers
verfasst von
Cosimo Ieracitano
Fabiola Pantò
Patrizia Frontera
Francesco Carlo Morabito
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-65172-9_3

Premium Partner