Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 2/2017

17.09.2016

RETRACTED ARTICLE: A new approach on preparation and characterization of zinc oxide deposited carbon nanotubes based materials applicable for electronic and optoelectronic devices

verfasst von: A. Salar Elahi, M. Ghoranneviss

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

ZnO is a wide-band-gap semiconductor material that is now being developed for many applications, including ultraviolet (UV) light-emitting diodes, UV photodetectors, transparent thin-film transistors, and gas sensors. It can be grown as boules, as thin films, or as nanostructures of many types and shapes. However, as with any useful semiconductor material, its electrical and optical properties are controlled by impurities and defects. We have reviewed the growth and analysis of carbon molecular crystals by the plasma enhanced chemical vapour deposition method. The three main synthesis methods of Carbon Nanocrystals (CNCs) are the arc discharge, the laser ablation and the chemical vapour deposition with a special regard to the later one. By two different methods ZnO layers were coated on the tubes. RF sputtering was one of the ways to directly deposit ZnO thin layer on the MWCNCs. On the other hand, we used thermally physical vapour deposition for making thin Zn film to oxidize it later. Scanning electron microscopy and also Raman spectroscopy measurements of the prepared samples confirmed the presence of ZnO nanolayers on the CNC bodies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. (Weinh. Ger.) 15, 353–389 (2003)CrossRef Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. (Weinh. Ger.) 15, 353–389 (2003)CrossRef
2.
Zurück zum Zitat S. Iijima, Helical microtubules of graphitic carbon. Nature (London) 354, 56–58 (1991)CrossRef S. Iijima, Helical microtubules of graphitic carbon. Nature (London) 354, 56–58 (1991)CrossRef
3.
Zurück zum Zitat M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes; Synthesis, Structure, Properties, and Applications (Springer, New York, 2001) M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes; Synthesis, Structure, Properties, and Applications (Springer, New York, 2001)
4.
Zurück zum Zitat W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin, I.T. Han, Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, J.M. Kim, Fully sealed, high-brightness Carbon-nanotube field-emission display. Appl. Phys. Lett. 75, 3129–3131 (1999)CrossRef W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin, I.T. Han, Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, J.M. Kim, Fully sealed, high-brightness Carbon-nanotube field-emission display. Appl. Phys. Lett. 75, 3129–3131 (1999)CrossRef
5.
Zurück zum Zitat I.C. Chen, L.H. Chen, X.R. Ye, C. Daraio, S. Jin, C.A. Orme, A. Quist, R. Lal, Extremely sharp carbon nanocone probes for atomic force microscopy imaging. Appl. Phys. Lett. 88, 153102–153104 (2006)CrossRef I.C. Chen, L.H. Chen, X.R. Ye, C. Daraio, S. Jin, C.A. Orme, A. Quist, R. Lal, Extremely sharp carbon nanocone probes for atomic force microscopy imaging. Appl. Phys. Lett. 88, 153102–153104 (2006)CrossRef
6.
Zurück zum Zitat S.S. Wong, A.T. Woolley, E. Joselevich, C.M. Lieber, Functionalization of carbon nanotube AFM probes using tip-activated gases. Chem. Phys. Lett. 306, 219–225 (1999)CrossRef S.S. Wong, A.T. Woolley, E. Joselevich, C.M. Lieber, Functionalization of carbon nanotube AFM probes using tip-activated gases. Chem. Phys. Lett. 306, 219–225 (1999)CrossRef
7.
Zurück zum Zitat R. Martel, T. Schmidt, H.R. Shea, T. Hertel, Ph Avouris, Single-and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998)CrossRef R. Martel, T. Schmidt, H.R. Shea, T. Hertel, Ph Avouris, Single-and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998)CrossRef
8.
Zurück zum Zitat Q.H. Wang, T.D. Corrigan, J.Y. Dai, R.P.H. Chang, A.R. Krauss, Field emission from nanotube bundle emitters at low fields. Appl. Phys. Lett. 70, 3308–3310 (1997)CrossRef Q.H. Wang, T.D. Corrigan, J.Y. Dai, R.P.H. Chang, A.R. Krauss, Field emission from nanotube bundle emitters at low fields. Appl. Phys. Lett. 70, 3308–3310 (1997)CrossRef
9.
Zurück zum Zitat S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Self-oriented regular arrays of Carbon nanotubes and their field emission properties. Science 283, 512–514 (1990)CrossRef S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Self-oriented regular arrays of Carbon nanotubes and their field emission properties. Science 283, 512–514 (1990)CrossRef
10.
Zurück zum Zitat C.S. Huang, C.Y. Yeh, Y.H. Chang, Y.M. Hsieh, C.Y. Ku, Q.T. Lai, Field emission properties of CNT-ZnO composite materials. Diam. Relat. Mater. 18, 452–456 (2009)CrossRef C.S. Huang, C.Y. Yeh, Y.H. Chang, Y.M. Hsieh, C.Y. Ku, Q.T. Lai, Field emission properties of CNT-ZnO composite materials. Diam. Relat. Mater. 18, 452–456 (2009)CrossRef
11.
Zurück zum Zitat W.A. de Heer, A. Châtelain, D. Ugarte, A carbon nanotube field-emission electron source. Science 270, 1179–1180 (1995)CrossRef W.A. de Heer, A. Châtelain, D. Ugarte, A carbon nanotube field-emission electron source. Science 270, 1179–1180 (1995)CrossRef
12.
Zurück zum Zitat A.G. Rinzler, J.H. Hafner, P. Nikolaev, P. Nordlander, D.T. Colbert, R.E. Smalley, L. Lou, S.G. Kim, D. Tománek, Unraveling nanotubes: field emission from an atomic wire. Science 269, 1550–1553 (1995)CrossRef A.G. Rinzler, J.H. Hafner, P. Nikolaev, P. Nordlander, D.T. Colbert, R.E. Smalley, L. Lou, S.G. Kim, D. Tománek, Unraveling nanotubes: field emission from an atomic wire. Science 269, 1550–1553 (1995)CrossRef
13.
Zurück zum Zitat N. de Jonge, Y. Lamy, K. Schoots, T.H. Oosterkamp, High brightness electron beam from a multi-walled carbon nanotube. Nature (London) 420, 393–395 (2002)CrossRef N. de Jonge, Y. Lamy, K. Schoots, T.H. Oosterkamp, High brightness electron beam from a multi-walled carbon nanotube. Nature (London) 420, 393–395 (2002)CrossRef
14.
Zurück zum Zitat J. Jiao, L.F. Dong, D.W. Tuggle, C.L. Mosher, S. Foxley, J. Tawdekar, Fabrication and characterization of carbon nanotube field emitters. Mater. Res. Soc. Symp. Proc. 706, 113–117 (2002) J. Jiao, L.F. Dong, D.W. Tuggle, C.L. Mosher, S. Foxley, J. Tawdekar, Fabrication and characterization of carbon nanotube field emitters. Mater. Res. Soc. Symp. Proc. 706, 113–117 (2002)
15.
Zurück zum Zitat W. Zhu, C. Bower, O. Zhou, G. Kochanski, S. Jin, Large current density from carbon nanotube field emitters. Appl. Phys. Lett. 75, 873–875 (1999)CrossRef W. Zhu, C. Bower, O. Zhou, G. Kochanski, S. Jin, Large current density from carbon nanotube field emitters. Appl. Phys. Lett. 75, 873–875 (1999)CrossRef
16.
Zurück zum Zitat J.M. Bonard, J.P. Salvetat, T. Stöckli, L. Forró, A. Châtelain, Field emission from carbon nanotubes: perspectives for applications and clues to the emission mechanism. Appl. Phys. A Mater. Sci. Process. 69, 245–254 (1999)CrossRef J.M. Bonard, J.P. Salvetat, T. Stöckli, L. Forró, A. Châtelain, Field emission from carbon nanotubes: perspectives for applications and clues to the emission mechanism. Appl. Phys. A Mater. Sci. Process. 69, 245–254 (1999)CrossRef
17.
Zurück zum Zitat M. Sveningsson, R.E. Morjan, O.A. Nerushev, Y. Sato, J. Bäckström, E.E.B. Campbell, F. Rohmund, Raman spectroscopy and field emission properties of CVD-grown carbon nanotube films. Appl. Phys. A 73, 409–418 (2001)CrossRef M. Sveningsson, R.E. Morjan, O.A. Nerushev, Y. Sato, J. Bäckström, E.E.B. Campbell, F. Rohmund, Raman spectroscopy and field emission properties of CVD-grown carbon nanotube films. Appl. Phys. A 73, 409–418 (2001)CrossRef
18.
Zurück zum Zitat J.M. Green, L. Dong, T. Gutu, J. Jiao, J.F. Conley, Y. Ono, ZnO-nanoparticle-coated carbon nanotubes demonstrating enhanced electron field-emission properties. J. Appl. Phys. 99, 094308–094311 (2006)CrossRef J.M. Green, L. Dong, T. Gutu, J. Jiao, J.F. Conley, Y. Ono, ZnO-nanoparticle-coated carbon nanotubes demonstrating enhanced electron field-emission properties. J. Appl. Phys. 99, 094308–094311 (2006)CrossRef
19.
Zurück zum Zitat H. Kim, W. Sigmund, Zinc oxide nanowires on carbon nanotubes. Appl. Phys. Lett. 81, 2085–2087 (2002)CrossRef H. Kim, W. Sigmund, Zinc oxide nanowires on carbon nanotubes. Appl. Phys. Lett. 81, 2085–2087 (2002)CrossRef
20.
21.
Zurück zum Zitat A. Salar Elahi et al., J. Cryst. Growth 415(1), 166–169 (2015) A. Salar Elahi et al., J. Cryst. Growth 415(1), 166–169 (2015)
22.
Zurück zum Zitat A. Salar Elahi et al., Mater. Manuf. Process. 30(11), 1348–1353 (2015)CrossRef A. Salar Elahi et al., Mater. Manuf. Process. 30(11), 1348–1353 (2015)CrossRef
23.
Zurück zum Zitat A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 25(4), 942–947 (2015)CrossRef A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 25(4), 942–947 (2015)CrossRef
25.
Zurück zum Zitat A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 25(5), 1040–1043 (2015)CrossRef A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 25(5), 1040–1043 (2015)CrossRef
26.
27.
Zurück zum Zitat A. Salar Elahi et al., Mol. Cryst. Liq. Cryst. 629(1), 158–164 (2016)CrossRef A. Salar Elahi et al., Mol. Cryst. Liq. Cryst. 629(1), 158–164 (2016)CrossRef
28.
Zurück zum Zitat A. Salar Elahi et al., Radiat. Eff. Defects Solids 170(6), 541–547 (2015)CrossRef A. Salar Elahi et al., Radiat. Eff. Defects Solids 170(6), 541–547 (2015)CrossRef
29.
30.
Zurück zum Zitat A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 25(6), 1470–1477 (2015)CrossRef A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 25(6), 1470–1477 (2015)CrossRef
31.
Zurück zum Zitat A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 25(6), 1486–1489 (2015)CrossRef A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 25(6), 1486–1489 (2015)CrossRef
32.
Zurück zum Zitat A. Salar Elahi et al., Int. J. Mater. Prod. Technol. 52(3–4), 353–361 (2016)CrossRef A. Salar Elahi et al., Int. J. Mater. Prod. Technol. 52(3–4), 353–361 (2016)CrossRef
33.
Zurück zum Zitat A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 26(1), 254–258 (2016)CrossRef A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 26(1), 254–258 (2016)CrossRef
34.
Zurück zum Zitat A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 26(1), 270–275 (2016)CrossRef A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 26(1), 270–275 (2016)CrossRef
35.
36.
Zurück zum Zitat A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 26(4), 773–779 (2016)CrossRef A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 26(4), 773–779 (2016)CrossRef
37.
Zurück zum Zitat A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 26(4), 889–894 (2016)CrossRef A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 26(4), 889–894 (2016)CrossRef
38.
39.
Metadaten
Titel
RETRACTED ARTICLE: A new approach on preparation and characterization of zinc oxide deposited carbon nanotubes based materials applicable for electronic and optoelectronic devices
verfasst von
A. Salar Elahi
M. Ghoranneviss
Publikationsdatum
17.09.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 2/2017
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-5709-5

Weitere Artikel der Ausgabe 2/2017

Journal of Materials Science: Materials in Electronics 2/2017 Zur Ausgabe

Neuer Inhalt