Skip to main content
Erschienen in: Calcolo 4/2016

01.12.2016

A new Legendre operational technique for delay fractional optimal control problems

verfasst von: A. H. Bhrawy, S. S. Ezz-Eldien

Erschienen in: Calcolo | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, new operational matrices for shifted Legendre orthonormal polynomial are derived. This polynomial is used as a basis function for developing a new numerical technique for the delay fractional optimal control problem. The fractional integral is described in the Riemann–Liouville sense, while the fractional derivative is described in the Caputo sense. The operational matrix of fractional integrals is used together with the Lagrange multiplier method for the constrained extremum in order to minimize the performance index. The problem is then reduced to a problem consists of a system of easily solvable algebraic equations. Three numerical examples of different types of delay fractional optimal control problems are implemented with their approximate solutions for confirming the high accuracy and applicability of the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Benson, D.A., Meerschaert, M.M., Revielle, J.: Fractional calculus in hydrologic modeling: a numerical perspective. Adv. Water Resour. 51, 479–497 (2013)CrossRef Benson, D.A., Meerschaert, M.M., Revielle, J.: Fractional calculus in hydrologic modeling: a numerical perspective. Adv. Water Resour. 51, 479–497 (2013)CrossRef
2.
Zurück zum Zitat Popovic, J.K., Spasic, D.T., Tosic, J., Kolarovic, J.L., Malti, R., Mitic, I.M., Pilipovic, S., Atanackovic, T.M.: Fractional model for pharmacokinetics of high dose methotrexate in children with acute lymphoblastic leukaemia. Commun. Nonlinear Sci. Numer. Simul. 22, 451–471 (2015)MathSciNetCrossRef Popovic, J.K., Spasic, D.T., Tosic, J., Kolarovic, J.L., Malti, R., Mitic, I.M., Pilipovic, S., Atanackovic, T.M.: Fractional model for pharmacokinetics of high dose methotrexate in children with acute lymphoblastic leukaemia. Commun. Nonlinear Sci. Numer. Simul. 22, 451–471 (2015)MathSciNetCrossRef
3.
Zurück zum Zitat Sierociuk, D., Dzielinski, A., Sarwas, G., Petras, I., Podlubny, I., Skovranek, T.: Modelling heat transfer in heterogeneous madia using fractional calculus. Phil. Trans. R. Soc. A 371, 20130146 (2013)MathSciNetCrossRefMATH Sierociuk, D., Dzielinski, A., Sarwas, G., Petras, I., Podlubny, I., Skovranek, T.: Modelling heat transfer in heterogeneous madia using fractional calculus. Phil. Trans. R. Soc. A 371, 20130146 (2013)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Larsson, S., Racheva, M., Saedpanah, F.: Discontinuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity. Comput. Method. Appl. Mech. Eng. 283, 196–209 (2015)MathSciNetCrossRef Larsson, S., Racheva, M., Saedpanah, F.: Discontinuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity. Comput. Method. Appl. Mech. Eng. 283, 196–209 (2015)MathSciNetCrossRef
5.
Zurück zum Zitat Lewandowski, R., Chorazyczewski, B.: Identification of the parameters of the Kelvin–Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers. Comput. Struct. 88, 1–17 (2010)CrossRef Lewandowski, R., Chorazyczewski, B.: Identification of the parameters of the Kelvin–Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers. Comput. Struct. 88, 1–17 (2010)CrossRef
6.
Zurück zum Zitat Sun, L., Chen, L.: Free vibrations of a taut cable with a general viscoelastic damper modeled by fractional derivatives. J. Sound Vib. 335, 19–33 (2015)CrossRef Sun, L., Chen, L.: Free vibrations of a taut cable with a general viscoelastic damper modeled by fractional derivatives. J. Sound Vib. 335, 19–33 (2015)CrossRef
7.
Zurück zum Zitat Jiang, Y., Wang, X., Wang, Y.: On a stochastic heat equation with first order fractional noises and applications to finance. J. Math. Anal. Appl. 396, 656–669 (2012)MathSciNetCrossRefMATH Jiang, Y., Wang, X., Wang, Y.: On a stochastic heat equation with first order fractional noises and applications to finance. J. Math. Anal. Appl. 396, 656–669 (2012)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Bohannan, G.: Analog fractional order controller in temperature and motor control applications. J. Vib. Contr. 14, 1487–1498 (2008)MathSciNetCrossRef Bohannan, G.: Analog fractional order controller in temperature and motor control applications. J. Vib. Contr. 14, 1487–1498 (2008)MathSciNetCrossRef
9.
Zurück zum Zitat Jiang, Y.-L., Ding, X.-L.: Waveform relaxation methods for fractional differential equations with the Caputo derivatives. J. Comput. Appl. Math. 238, 51–67 (2013)MathSciNetCrossRefMATH Jiang, Y.-L., Ding, X.-L.: Waveform relaxation methods for fractional differential equations with the Caputo derivatives. J. Comput. Appl. Math. 238, 51–67 (2013)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, New York (2008)MATH Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, New York (2008)MATH
11.
Zurück zum Zitat Irandoust-Pakchin, S., Dehghan, M., Abdi-Mazraeh, S., Lakestani, M.: Numerical solution for a class of fractional convection diffusion equations using the flatlet oblique multiwavelets. J. Vib. Control 20, 913–924 (2014)MathSciNetCrossRef Irandoust-Pakchin, S., Dehghan, M., Abdi-Mazraeh, S., Lakestani, M.: Numerical solution for a class of fractional convection diffusion equations using the flatlet oblique multiwavelets. J. Vib. Control 20, 913–924 (2014)MathSciNetCrossRef
12.
Zurück zum Zitat Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. 293, 142–156 (2015)MathSciNetCrossRef Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. 293, 142–156 (2015)MathSciNetCrossRef
13.
Zurück zum Zitat Darzi, R., Mohammadzade, B., Mousavi, S., Beheshti, R.: Sumudu transform method for solving fractional differential equations and fractional diffusion-wave equation. J. Math. Comput. Sci. 6, 79–84 (2013) Darzi, R., Mohammadzade, B., Mousavi, S., Beheshti, R.: Sumudu transform method for solving fractional differential equations and fractional diffusion-wave equation. J. Math. Comput. Sci. 6, 79–84 (2013)
14.
Zurück zum Zitat Heydari, M.H., Hooshmandasl, M.R., Mohammadi, F., Cattani, C.: Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations. Commun. Nonlinear Sci. Numer. Simul. 19(1), 37–48 (2014)MathSciNetCrossRefMATH Heydari, M.H., Hooshmandasl, M.R., Mohammadi, F., Cattani, C.: Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations. Commun. Nonlinear Sci. Numer. Simul. 19(1), 37–48 (2014)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Bhrawy, A.H., Baleanu, D., Assas, L.: Efficient generalized laguerre-spectral methods for solving multi-term fractional differential equations on the half line. J. Vib. Control 20, 973–985 (2013)MathSciNetCrossRefMATH Bhrawy, A.H., Baleanu, D., Assas, L.: Efficient generalized laguerre-spectral methods for solving multi-term fractional differential equations on the half line. J. Vib. Control 20, 973–985 (2013)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S., Gorder, R.A.V.: A new Jacobi spectral collocation method for solving 1+1 fractional Schrödinger equations and fractional coupled Schrödinger systems. Eur. Phys. J. Plus 129(12), 1–21 (2014)CrossRef Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S., Gorder, R.A.V.: A new Jacobi spectral collocation method for solving 1+1 fractional Schrödinger equations and fractional coupled Schrödinger systems. Eur. Phys. J. Plus 129(12), 1–21 (2014)CrossRef
17.
Zurück zum Zitat Ma, J., Liu, J., Zhou, Z.: Convergence analysis of moving finite element methods for space fractional differential equations. J. Comput. Appl. Math. 255, 661–670 (2014)MathSciNetCrossRefMATH Ma, J., Liu, J., Zhou, Z.: Convergence analysis of moving finite element methods for space fractional differential equations. J. Comput. Appl. Math. 255, 661–670 (2014)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Wang, H., Du, N.: Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. J. Comput. Phys. 258, 305–318 (2014)MathSciNetCrossRef Wang, H., Du, N.: Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. J. Comput. Phys. 258, 305–318 (2014)MathSciNetCrossRef
19.
Zurück zum Zitat Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)MathSciNetCrossRef Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)MathSciNetCrossRef
20.
Zurück zum Zitat Piret, C., Hanert, E.: A radial basis functions method for fractional diffusion equations. J. Comput. Phys. 238, 71–81 (2012)MathSciNetCrossRefMATH Piret, C., Hanert, E.: A radial basis functions method for fractional diffusion equations. J. Comput. Phys. 238, 71–81 (2012)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Shen, S., Liu, F., Chen, J., Turner, I., Anh, V.: Numerical techniques for the variable order time fractional diffusion equation. Appl. Math. Comput. 218, 10861–10870 (2012)MathSciNetMATH Shen, S., Liu, F., Chen, J., Turner, I., Anh, V.: Numerical techniques for the variable order time fractional diffusion equation. Appl. Math. Comput. 218, 10861–10870 (2012)MathSciNetMATH
22.
23.
Zurück zum Zitat Bhrawy, A.H., Zaky, M.A., Tenreiro Machado, J.A.: Efficient Legendre spectral tau algorithm for solving two-sided space–time Caputo fractional advection-dispersion equation. J. Vib. Control (2015). doi:10.1177/1077546314566835 Bhrawy, A.H., Zaky, M.A., Tenreiro Machado, J.A.: Efficient Legendre spectral tau algorithm for solving two-sided space–time Caputo fractional advection-dispersion equation. J. Vib. Control (2015). doi:10.​1177/​1077546314566835​
24.
Zurück zum Zitat Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: An efficient Legendre spectral tau matrix formulation for solving fractional sub-diffusion and reaction sub-diffusion equations. J. Comput. Nonlinear Dyn. 10(2), 021019 (2015)CrossRef Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: An efficient Legendre spectral tau matrix formulation for solving fractional sub-diffusion and reaction sub-diffusion equations. J. Comput. Nonlinear Dyn. 10(2), 021019 (2015)CrossRef
25.
Zurück zum Zitat Doha, E.H., Bhrawy, A.H., Baleanu, D., Ezz-Eldien, S.S.: On shifted Jacobi spectral approximations for solving fractional differential equations. Appl. Math. Comput. 219, 8042–8056 (2013)MathSciNetMATH Doha, E.H., Bhrawy, A.H., Baleanu, D., Ezz-Eldien, S.S.: On shifted Jacobi spectral approximations for solving fractional differential equations. Appl. Math. Comput. 219, 8042–8056 (2013)MathSciNetMATH
26.
Zurück zum Zitat Kayedi-Bardeh, A., Eslahchi, M., Dehghan, M.: A method for obtaining the operational matrix of fractional Jacobi functions and applications. J. Vib. Control 20, 736–748 (2014)MathSciNetCrossRef Kayedi-Bardeh, A., Eslahchi, M., Dehghan, M.: A method for obtaining the operational matrix of fractional Jacobi functions and applications. J. Vib. Control 20, 736–748 (2014)MathSciNetCrossRef
27.
Zurück zum Zitat Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A new Jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Model. 36, 4931–4943 (2012)MathSciNetCrossRefMATH Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A new Jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Model. 36, 4931–4943 (2012)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Hartley, T.T., Lorenzo, C.F.: Dynamics and control of initialized fractional-order systems. Nonlinear Dyn. 29, 201–233 (2002)MathSciNetCrossRefMATH Hartley, T.T., Lorenzo, C.F.: Dynamics and control of initialized fractional-order systems. Nonlinear Dyn. 29, 201–233 (2002)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Hartley, T.T., Lorenzo, C.F.: Application of incomplete gamma functions to the initialization of fractional order systems. In: Proceedings of the ASME 2007 International Design Engineering Technical Conferences, DETC 2007-34814, Las Vegas (2007) Hartley, T.T., Lorenzo, C.F.: Application of incomplete gamma functions to the initialization of fractional order systems. In: Proceedings of the ASME 2007 International Design Engineering Technical Conferences, DETC 2007-34814, Las Vegas (2007)
30.
Zurück zum Zitat Achar, N., Lorenzo, C.F., Hartley, T.T.: Initialization and the Caputo fractional derivative. NASA John H. Glenn Research Center at Lewis Field report (2003) Achar, N., Lorenzo, C.F., Hartley, T.T.: Initialization and the Caputo fractional derivative. NASA John H. Glenn Research Center at Lewis Field report (2003)
31.
Zurück zum Zitat Sabatier, J., Farges, C., Trigeassou, J.C.: Fractional systems state space description: some wrong ideas and proposed solutions. J. Vib. Control 20, 1076–1084 (2014)MathSciNetCrossRef Sabatier, J., Farges, C., Trigeassou, J.C.: Fractional systems state space description: some wrong ideas and proposed solutions. J. Vib. Control 20, 1076–1084 (2014)MathSciNetCrossRef
32.
Zurück zum Zitat Ortigueira, M.D., Coito, F.J.: Initial conditions: what are we talking about? Third IFAC Workshop on Fractional Differentiation, Ankara, Turkey, 05–07 November (2008) Ortigueira, M.D., Coito, F.J.: Initial conditions: what are we talking about? Third IFAC Workshop on Fractional Differentiation, Ankara, Turkey, 05–07 November (2008)
33.
Zurück zum Zitat Sabatier, J., Farges, C., Oustaloup, A.: On fractional systems state space description. J. Vib. Control 20, 1076–1084 (2014)MathSciNetCrossRef Sabatier, J., Farges, C., Oustaloup, A.: On fractional systems state space description. J. Vib. Control 20, 1076–1084 (2014)MathSciNetCrossRef
34.
Zurück zum Zitat Bryson, A.E., Ho, Y.C.: Applied Optimal Control: Optimization, Estimation, and Control2. Blaisdell Publishing Company, Waltham (1975) Bryson, A.E., Ho, Y.C.: Applied Optimal Control: Optimization, Estimation, and Control2. Blaisdell Publishing Company, Waltham (1975)
35.
Zurück zum Zitat Gregory, J., Lin, C.: Constrained Optimization in the Calculus of Variations and Optimal Control Theory. Van Nostrand-Reinhold, South Carolina (1992)CrossRefMATH Gregory, J., Lin, C.: Constrained Optimization in the Calculus of Variations and Optimal Control Theory. Van Nostrand-Reinhold, South Carolina (1992)CrossRefMATH
36.
Zurück zum Zitat Hestenes, M.R.: Calculus of Variations and Optimal Control Theory. Wiley, New York (1966)MATH Hestenes, M.R.: Calculus of Variations and Optimal Control Theory. Wiley, New York (1966)MATH
37.
Zurück zum Zitat Zamani, M., Karimi-Ghartemani, M., Sadati, N.: FOPID controller design for robust performance using particle swarm optimization. J. Frac. Calc. Appl. Anal. 10, 169–188 (2007)MathSciNetMATH Zamani, M., Karimi-Ghartemani, M., Sadati, N.: FOPID controller design for robust performance using particle swarm optimization. J. Frac. Calc. Appl. Anal. 10, 169–188 (2007)MathSciNetMATH
38.
Zurück zum Zitat Bohannan, G.W.: Analog fractional order controller in temperature and motor control applications. J. Vib. Control 14, 1487–1498 (2008)MathSciNetCrossRef Bohannan, G.W.: Analog fractional order controller in temperature and motor control applications. J. Vib. Control 14, 1487–1498 (2008)MathSciNetCrossRef
39.
40.
Zurück zum Zitat Suarez, I.J., Vinagre, B.M., Chen, Y.Q.: A fractional adaptation scheme for lateral control of an AGV. J. Vib. Control 14, 1499–1511 (2008)MathSciNetCrossRefMATH Suarez, I.J., Vinagre, B.M., Chen, Y.Q.: A fractional adaptation scheme for lateral control of an AGV. J. Vib. Control 14, 1499–1511 (2008)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Jelicic, Z.D., Petrovacki, N.: Optimality conditions and a solution scheme for fractional optimal control problems. Struct. Multidisc. Optim. 38, 571–581 (2009)MathSciNetCrossRefMATH Jelicic, Z.D., Petrovacki, N.: Optimality conditions and a solution scheme for fractional optimal control problems. Struct. Multidisc. Optim. 38, 571–581 (2009)MathSciNetCrossRefMATH
42.
Zurück zum Zitat Biswas, R.K., Sen, S.: Fractional optimal control problems: a pseudo-state-space approach. J. Vib. Control 17(7), 1034–1041 (2010)MathSciNetCrossRefMATH Biswas, R.K., Sen, S.: Fractional optimal control problems: a pseudo-state-space approach. J. Vib. Control 17(7), 1034–1041 (2010)MathSciNetCrossRefMATH
43.
Zurück zum Zitat Yousefi, S.A., Lotfi, A., Dehghan, M.: The use of a Legendre multiwavelet collocation method for solving the fractional optimal control problems. J. Vib. Control 13, 1–7 (2011)MathSciNetMATH Yousefi, S.A., Lotfi, A., Dehghan, M.: The use of a Legendre multiwavelet collocation method for solving the fractional optimal control problems. J. Vib. Control 13, 1–7 (2011)MathSciNetMATH
44.
Zurück zum Zitat Alipour, M., Rostamy, D., Baleanu, D.: Solving multi-dimensional fractional optimal control problems with inequality constraint by Bernstein polynomials operational matrices. J. Vib. Control 19, 2523–2540 (2013)MathSciNetCrossRef Alipour, M., Rostamy, D., Baleanu, D.: Solving multi-dimensional fractional optimal control problems with inequality constraint by Bernstein polynomials operational matrices. J. Vib. Control 19, 2523–2540 (2013)MathSciNetCrossRef
46.
Zurück zum Zitat Tohidi, E., Nik, H.S.: A Bessel collocation method for solving fractional optimal control problems. Appl. Math. Model. 39(2), 455–465 (2015)MathSciNetCrossRef Tohidi, E., Nik, H.S.: A Bessel collocation method for solving fractional optimal control problems. Appl. Math. Model. 39(2), 455–465 (2015)MathSciNetCrossRef
47.
Zurück zum Zitat Hosseinpour, S., Nazemi, A.: Solving fractional optimal control problems with fixed or free final states by Haar wavelet collocation method. IMA J. Math. Control. I. (2015). doi:10.1093/imamci/dnu058 Hosseinpour, S., Nazemi, A.: Solving fractional optimal control problems with fixed or free final states by Haar wavelet collocation method. IMA J. Math. Control. I. (2015). doi:10.​1093/​imamci/​dnu058
48.
Zurück zum Zitat Doha, E.H., Bhrawy, A.H., Baleanu, D., Ezz-Eldien, S.S., Hafez, R.M.: An efficient numerical scheme based on the shifted orthonormal Jacobi polynomials for solving fractional optimal control problems. Adv. Differ. Equ. (2015). doi:10.1186/s13662-014-0344-z MathSciNetMATH Doha, E.H., Bhrawy, A.H., Baleanu, D., Ezz-Eldien, S.S., Hafez, R.M.: An efficient numerical scheme based on the shifted orthonormal Jacobi polynomials for solving fractional optimal control problems. Adv. Differ. Equ. (2015). doi:10.​1186/​s13662-014-0344-z MathSciNetMATH
49.
Zurück zum Zitat Bhrawy, A.H., Doha, E.H., Tenreiro Machado, J.A., Ezz-Eldien, S.S.: An efficient numerical scheme for solving multi-dimensional fractional optimal control problems with a quadratic performance index. Asian J. Control (2015). doi:10.1002/asjc.1109 Bhrawy, A.H., Doha, E.H., Tenreiro Machado, J.A., Ezz-Eldien, S.S.: An efficient numerical scheme for solving multi-dimensional fractional optimal control problems with a quadratic performance index. Asian J. Control (2015). doi:10.​1002/​asjc.​1109
50.
Zurück zum Zitat Ezz-Eldien, S.S., Doha, E.H., Baleanu, D., Bhrawy, A.H.: A numerical approach based on Legendre orthonormal polynomials for numerical solutions of fractional optimal control problems. J. Vib. Control (2015). doi:10.1177/1077546315573916 MATH Ezz-Eldien, S.S., Doha, E.H., Baleanu, D., Bhrawy, A.H.: A numerical approach based on Legendre orthonormal polynomials for numerical solutions of fractional optimal control problems. J. Vib. Control (2015). doi:10.​1177/​1077546315573916​ MATH
51.
Zurück zum Zitat Driver, R.D.: Ordinary and Delay Differential Equations, Applied Mathematical Sciences. Springer, New York (1977)CrossRefMATH Driver, R.D.: Ordinary and Delay Differential Equations, Applied Mathematical Sciences. Springer, New York (1977)CrossRefMATH
52.
Zurück zum Zitat Jamshidi, M., Wang, C.M.: A computational algorithm for large-scale nonlinear time-delay systems. IEEE Trans. Syst. Man Cybern. 14, 2–9 (1984)MathSciNetCrossRefMATH Jamshidi, M., Wang, C.M.: A computational algorithm for large-scale nonlinear time-delay systems. IEEE Trans. Syst. Man Cybern. 14, 2–9 (1984)MathSciNetCrossRefMATH
53.
Zurück zum Zitat Malek-Zavarei, M., Jamshidi, M.: Time Delay Systems: Analysis, Optimization and Applications (North-Holland Systems and Control Series). Elsevier Science, New York (1987)MATH Malek-Zavarei, M., Jamshidi, M.: Time Delay Systems: Analysis, Optimization and Applications (North-Holland Systems and Control Series). Elsevier Science, New York (1987)MATH
54.
Zurück zum Zitat Witayakiattilerd, W.: Optimal regulation of impulsive fractional differential equation with delay and application to nonlinear fractional heat equation. J. Math. Res. 5(2), 94–106 (2013)CrossRef Witayakiattilerd, W.: Optimal regulation of impulsive fractional differential equation with delay and application to nonlinear fractional heat equation. J. Math. Res. 5(2), 94–106 (2013)CrossRef
55.
Zurück zum Zitat Wang, Q., Chen, F., Huang, F.: Maximum principle for optimal control problem of stochastic delay differential equations driven by fractional Brownian motions. Optim. Control Appl. Meth. (2014). doi:10.1002/oca.2155 MathSciNetMATH Wang, Q., Chen, F., Huang, F.: Maximum principle for optimal control problem of stochastic delay differential equations driven by fractional Brownian motions. Optim. Control Appl. Meth. (2014). doi:10.​1002/​oca.​2155 MathSciNetMATH
56.
Zurück zum Zitat Jarad, F., Abdeljawad, T., Baleanu, D.: Higher order fractional variational optimal control problems with delayed arguments. Appl. Math. Comput. 218, 9234–9240 (2012)MathSciNetMATH Jarad, F., Abdeljawad, T., Baleanu, D.: Higher order fractional variational optimal control problems with delayed arguments. Appl. Math. Comput. 218, 9234–9240 (2012)MathSciNetMATH
57.
Zurück zum Zitat Safaie, E., Farahi, M.H., Farmani Ardehaie, M.: An approximate method for numerically solving multi-dimensional delay fractional optimal control problems by Bernstein polynomials. Comput. Appl. Math. (2014). doi:10.1007/s40314-014-0142-y Safaie, E., Farahi, M.H., Farmani Ardehaie, M.: An approximate method for numerically solving multi-dimensional delay fractional optimal control problems by Bernstein polynomials. Comput. Appl. Math. (2014). doi:10.​1007/​s40314-014-0142-y
58.
Zurück zum Zitat Safaie, E., Farahi, M.H.: An approximation method for numerical solution of multi-dimensional feedback delay fractional optimal control problems by Bernstein polynomials. Iran. J. Numer. Anal. Optim. 4, 77–94 (2014)MATH Safaie, E., Farahi, M.H.: An approximation method for numerical solution of multi-dimensional feedback delay fractional optimal control problems by Bernstein polynomials. Iran. J. Numer. Anal. Optim. 4, 77–94 (2014)MATH
59.
Zurück zum Zitat Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: State variables and transients of fractional order diffrential systems. Comput. Math. Appl. 64, 3117–3140 (2012)MathSciNetCrossRefMATH Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: State variables and transients of fractional order diffrential systems. Comput. Math. Appl. 64, 3117–3140 (2012)MathSciNetCrossRefMATH
60.
Zurück zum Zitat Sabatier, J., Merveillaut, M., Malti, R., Oustaloup, A.: On a representation of fractional order systems: interests for the initial condition problem. In: Proceedings of the 3rd IFAC Workshop on Fractional Diffrentiation and its Applications (FDA 08), Ankara, Turkey (2008) Sabatier, J., Merveillaut, M., Malti, R., Oustaloup, A.: On a representation of fractional order systems: interests for the initial condition problem. In: Proceedings of the 3rd IFAC Workshop on Fractional Diffrentiation and its Applications (FDA 08), Ankara, Turkey (2008)
61.
Zurück zum Zitat Sabatier, J., Merveillaut, M., Malti, R., Oustaloup, A.: How to impose physically coherent initial conditions to a fractional system? Commun. Nonlinear Sci. Numer. Simul. 15, 1318–1326 (2010)MathSciNetCrossRefMATH Sabatier, J., Merveillaut, M., Malti, R., Oustaloup, A.: How to impose physically coherent initial conditions to a fractional system? Commun. Nonlinear Sci. Numer. Simul. 15, 1318–1326 (2010)MathSciNetCrossRefMATH
62.
Zurück zum Zitat Lorenzo, C.F., Hartley, T.T.: Initialization in fractional order systems. In: Proceedings of the European Control Conference, Porto, Portugal, pp. 1471–1476 (2001) Lorenzo, C.F., Hartley, T.T.: Initialization in fractional order systems. In: Proceedings of the European Control Conference, Porto, Portugal, pp. 1471–1476 (2001)
63.
Zurück zum Zitat Lorenzo, C.F., Hartley, T.T.: Initialization of fractional differential equations: theory and application. In: Proceedings of the ASME 2007 International Design Engineering Technical Conferences, DETC 2007-34814 Las Vegas, USA (2007) Lorenzo, C.F., Hartley, T.T.: Initialization of fractional differential equations: theory and application. In: Proceedings of the ASME 2007 International Design Engineering Technical Conferences, DETC 2007-34814 Las Vegas, USA (2007)
64.
Zurück zum Zitat Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: Transients of fractional-order integrator and derivatives. Signal Image Video Process. 6, 359–372 (2012)CrossRefMATH Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: Transients of fractional-order integrator and derivatives. Signal Image Video Process. 6, 359–372 (2012)CrossRefMATH
65.
Zurück zum Zitat Wang, X.T.: Numerical solutions of optimal control for time delay systems by hybrid of block-pulse functions and Legendre polynomials. Appl. Math. Comput. 184, 849–856 (2007)MathSciNetMATH Wang, X.T.: Numerical solutions of optimal control for time delay systems by hybrid of block-pulse functions and Legendre polynomials. Appl. Math. Comput. 184, 849–856 (2007)MathSciNetMATH
66.
Zurück zum Zitat Ghomanjani, F., Farahi, M.H., Gachpazan, M.: Optimal control of time-varying linear delay systems based on the Bezier curves. Comput. Appl. Math. (2013). doi:10.1007/s40314-013-0089-4 Ghomanjani, F., Farahi, M.H., Gachpazan, M.: Optimal control of time-varying linear delay systems based on the Bezier curves. Comput. Appl. Math. (2013). doi:10.​1007/​s40314-013-0089-4
67.
Zurück zum Zitat Wang, X.T.: Numerical solutions of optimal control for linear time-varying systems with delays via hybrid functions. J. Franklin Inst. 344, 941–953 (2007)MathSciNetCrossRefMATH Wang, X.T.: Numerical solutions of optimal control for linear time-varying systems with delays via hybrid functions. J. Franklin Inst. 344, 941–953 (2007)MathSciNetCrossRefMATH
Metadaten
Titel
A new Legendre operational technique for delay fractional optimal control problems
verfasst von
A. H. Bhrawy
S. S. Ezz-Eldien
Publikationsdatum
01.12.2016
Verlag
Springer Milan
Erschienen in
Calcolo / Ausgabe 4/2016
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-015-0160-1

Weitere Artikel der Ausgabe 4/2016

Calcolo 4/2016 Zur Ausgabe

Premium Partner