Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 5/2021

12.10.2020 | Research Article-Civil Engineering

A New Method for Predicting the Ingredients of Self-Compacting Concrete (SCC) Including Fly Ash (FA) Using Data Envelopment Analysis (DEA)

verfasst von: Farzad Rezai Balf, Hamidreza Mahmoodi Kordkheili, Alireza Mahmoodi Kordkheili

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Self-compacting concrete (SCC) is a liquid mixture appropriate for putting in structures with excessive reinforcement without vibration. The application of SCC has found wide use in practice. However, its application is often limited by lack of knowledge on mix material gained from laboratory tests. This paper presents a nonparametric mathematical method for the design of SCC mixes containing fly ash, which called as data envelopment analysis (DEA). DEA have the ability to estimate a set of units (a unit is consisted of multi-input–multi-output), in order to determine their efficiencies. To create DEA models, a database of experimental data was collected from the technical literature and applied. The data applied in the data envelopment analysis approach are organized in a format of six inputs parameters that contain superplasticizer, coarse aggregates, fine aggregates, water–binder ratio, fly ash replacement percentage, and the total binder content. Four outputs parameters are predicted based on the DEA method as the V-funnel time, the slump flow, the L-box ratio, and the cylindrical compressive strength at 28 days of SCC including fly ash. In this paper, we predict the optimal level of input required to produce the level of output required by SCC using DEA. To validate the usefulness of the suggested model and better its proficiency, a comparison of the DEA model with other investigator’s empirical results and other models results such as ANN was performed, and a good assent was gained.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Douma, O.B.; Boukhatem, B.; Ghrici, M.; Tagnit-Hamou, A.: Prediction of properties of self-compacting concrete containing fly ash using artificial neural network. Neural Comput. Appl. 28(1), 707–718 (2017) Douma, O.B.; Boukhatem, B.; Ghrici, M.; Tagnit-Hamou, A.: Prediction of properties of self-compacting concrete containing fly ash using artificial neural network. Neural Comput. Appl. 28(1), 707–718 (2017)
2.
Zurück zum Zitat Boukhatem, B.; Kenai, S.; Tagnit-Hamou, A.; Ghrici, M.: Application of new information technology on concrete: an overview. J. Civ. Eng. Manag. 17(2), 248–258 (2011) Boukhatem, B.; Kenai, S.; Tagnit-Hamou, A.; Ghrici, M.: Application of new information technology on concrete: an overview. J. Civ. Eng. Manag. 17(2), 248–258 (2011)
3.
Zurück zum Zitat Aiyer, B.G.; Kim, D.; Karingattikkal, N.; Samui, P.; Rao, P.R.: Prediction of compressive strength of self-compacting concrete using least square support vector machine and relevance vector machine. KSCE J. Civ. Eng. 18(6), 1753–1758 (2014) Aiyer, B.G.; Kim, D.; Karingattikkal, N.; Samui, P.; Rao, P.R.: Prediction of compressive strength of self-compacting concrete using least square support vector machine and relevance vector machine. KSCE J. Civ. Eng. 18(6), 1753–1758 (2014)
4.
Zurück zum Zitat Gencel, O.; Cengiz, O.Z.E.L.; Koksal, F.; Martinez-Barrera, G.; Brostow, W.; Polat, H.: Fuzzy logic model for prediction of properties of fiber reinforced self-compacting concrete. Mater. Sci. 19(2), 203–215 (2013) Gencel, O.; Cengiz, O.Z.E.L.; Koksal, F.; Martinez-Barrera, G.; Brostow, W.; Polat, H.: Fuzzy logic model for prediction of properties of fiber reinforced self-compacting concrete. Mater. Sci. 19(2), 203–215 (2013)
5.
Zurück zum Zitat Tayfur, G.; Erdem, T.K.; Kırca, Ö.: Strength prediction of high-strength concrete by fuzzy logic and artificial neural networks. J. Mater. Civ. Eng. 26(11), 04014079 (2014) Tayfur, G.; Erdem, T.K.; Kırca, Ö.: Strength prediction of high-strength concrete by fuzzy logic and artificial neural networks. J. Mater. Civ. Eng. 26(11), 04014079 (2014)
6.
Zurück zum Zitat Yeh, I.C.: Analysis of strength of concrete using design of experiments and neural networks. J. Mater. Civ. Eng. 18(4), 597–604 (2006) Yeh, I.C.: Analysis of strength of concrete using design of experiments and neural networks. J. Mater. Civ. Eng. 18(4), 597–604 (2006)
7.
Zurück zum Zitat Pham, A.D.; Hoang, N.D.; Nguyen, Q.T.: Predicting compressive strength of high-performance concrete using metaheuristic-optimized least squares support vector regression. J. Comput. Civ. Eng. 30(3), 06015002 (2016) Pham, A.D.; Hoang, N.D.; Nguyen, Q.T.: Predicting compressive strength of high-performance concrete using metaheuristic-optimized least squares support vector regression. J. Comput. Civ. Eng. 30(3), 06015002 (2016)
8.
Zurück zum Zitat Yuvaraj, P.; Murthy, A.R.; Iyer, N.R.; Sekar, S.K.; Samui, P.: Support vector regression based models to predict fracture characteristics of high strength and ultra high strength concrete beams. Eng. Fract. Mech. 98, 29–43 (2013) Yuvaraj, P.; Murthy, A.R.; Iyer, N.R.; Sekar, S.K.; Samui, P.: Support vector regression based models to predict fracture characteristics of high strength and ultra high strength concrete beams. Eng. Fract. Mech. 98, 29–43 (2013)
9.
Zurück zum Zitat Yan, K.; Shi, C.: Prediction of elastic modulus of normal and high strength concrete by support vector machine. Constr. Build. Mater. 24(8), 1479–1485 (2010) Yan, K.; Shi, C.: Prediction of elastic modulus of normal and high strength concrete by support vector machine. Constr. Build. Mater. 24(8), 1479–1485 (2010)
10.
Zurück zum Zitat Nair, Y.C.; Binsha, P.; Pradeep, V.V.; Sowmya, V.; Soman, K.P.: Spreadsheet implementation of random kitchen sink for classification. In: IEEE Sponsored 2nd International Conference on Innovations in Information. Embedded and Communication Systems (ICIIECS) (2015) Nair, Y.C.; Binsha, P.; Pradeep, V.V.; Sowmya, V.; Soman, K.P.: Spreadsheet implementation of random kitchen sink for classification. In: IEEE Sponsored 2nd International Conference on Innovations in Information. Embedded and Communication Systems (ICIIECS) (2015)
11.
Zurück zum Zitat Sathyan, D.; Anand, K.B.; Prakash, A.J.; Premjith, B.: Modeling the fresh and hardened stage properties of self-compacting concrete using random kitchen sink algorithm. Int. J. Concr. Struct. Mater. 12(1), 24 (2018) Sathyan, D.; Anand, K.B.; Prakash, A.J.; Premjith, B.: Modeling the fresh and hardened stage properties of self-compacting concrete using random kitchen sink algorithm. Int. J. Concr. Struct. Mater. 12(1), 24 (2018)
12.
Zurück zum Zitat Prakash, A.J.; Sathyan, D.; Anand, K.B.; Premjith, B.: Prediction of passing ability of self compacting concrete regularized least square approach. In: Proceedings of International Conference on Emerging and Sustainable Technologies for Infrastructure Systems, pp. 323–328 (2016) Prakash, A.J.; Sathyan, D.; Anand, K.B.; Premjith, B.: Prediction of passing ability of self compacting concrete regularized least square approach. In: Proceedings of International Conference on Emerging and Sustainable Technologies for Infrastructure Systems, pp. 323–328 (2016)
13.
Zurück zum Zitat Jin-li, W.; Hai-qing, L.: Application of neural network in prediction for self-compaction concrete. In: Fuzzy Information and Engineering, pp. 733–738. Springer, Berlin (2010) Jin-li, W.; Hai-qing, L.: Application of neural network in prediction for self-compaction concrete. In: Fuzzy Information and Engineering, pp. 733–738. Springer, Berlin (2010)
14.
Zurück zum Zitat Uysal, M.; Tanyildizi, H.: Estimation of compressive strength of self compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network. Constr. Build. Mater. 27(1), 404–414 (2012) Uysal, M.; Tanyildizi, H.: Estimation of compressive strength of self compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network. Constr. Build. Mater. 27(1), 404–414 (2012)
15.
Zurück zum Zitat Siddique, R.; Aggarwal, P.; Aggarwal, Y.: Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks. Adv. Eng. Softw. 42(10), 780–786 (2011) Siddique, R.; Aggarwal, P.; Aggarwal, Y.: Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks. Adv. Eng. Softw. 42(10), 780–786 (2011)
16.
Zurück zum Zitat Güneyisi, E.; Gesoglu, M.; Özbay, E.: Evaluating and forecasting the initial and final setting times of self-compacting concretes containing mineral admixtures by neural network. Mater. Struct. 42(4), 469–484 (2009) Güneyisi, E.; Gesoglu, M.; Özbay, E.: Evaluating and forecasting the initial and final setting times of self-compacting concretes containing mineral admixtures by neural network. Mater. Struct. 42(4), 469–484 (2009)
17.
Zurück zum Zitat Zhou, S.Q.; Shi, J.J.; Yang, X.F.; Lei, L.: Application of neural network in prediction for flowing property of self-compacting concrete. J. Water Resour. Archit. Eng. 4, 012 (2005) Zhou, S.Q.; Shi, J.J.; Yang, X.F.; Lei, L.: Application of neural network in prediction for flowing property of self-compacting concrete. J. Water Resour. Archit. Eng. 4, 012 (2005)
18.
Zurück zum Zitat Ni, H.G.; Wang, J.Z.: Prediction of compressive strength of concrete by neural networks. Cem. Concr. Res. 30(8), 1245–1250 (2000) Ni, H.G.; Wang, J.Z.: Prediction of compressive strength of concrete by neural networks. Cem. Concr. Res. 30(8), 1245–1250 (2000)
19.
Zurück zum Zitat Öztaş, A.; Pala, M.; Özbay, E.; Kanca, E.; Caglar, N.; Bhatti, M.A.: Predicting the compressive strength and slump of high strength concrete using neural network. Constr. Build. Mater. 20(9), 769–775 (2006) Öztaş, A.; Pala, M.; Özbay, E.; Kanca, E.; Caglar, N.; Bhatti, M.A.: Predicting the compressive strength and slump of high strength concrete using neural network. Constr. Build. Mater. 20(9), 769–775 (2006)
20.
Zurück zum Zitat Kewalramani, M.A.; Gupta, R.: Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks. Autom. Constr. 15(3), 374–379 (2006) Kewalramani, M.A.; Gupta, R.: Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks. Autom. Constr. 15(3), 374–379 (2006)
21.
Zurück zum Zitat Topçu, İ.B.; Sarıdemir, M.: Prediction of mechanical properties of recycled aggregate concretes containing silica fume using artificial neural networks and fuzzy logic. Comput. Mater. Sci. 42(1), 74–82 (2008) Topçu, İ.B.; Sarıdemir, M.: Prediction of mechanical properties of recycled aggregate concretes containing silica fume using artificial neural networks and fuzzy logic. Comput. Mater. Sci. 42(1), 74–82 (2008)
22.
Zurück zum Zitat Li, F.X.; Yu, Q.J.; Wei, J.X.; Li, J.X.: Predicting the workability of self-compacting concrete using artificial neural network. Adv. Mater. Res. 168, 1730–1734 (2011) Li, F.X.; Yu, Q.J.; Wei, J.X.; Li, J.X.: Predicting the workability of self-compacting concrete using artificial neural network. Adv. Mater. Res. 168, 1730–1734 (2011)
23.
Zurück zum Zitat Prasad, B.R.; Eskandari, H.; Reddy, B.V.: Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN. Constr. Build. Mater. 23(1), 117–128 (2009) Prasad, B.R.; Eskandari, H.; Reddy, B.V.: Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN. Constr. Build. Mater. 23(1), 117–128 (2009)
24.
Zurück zum Zitat Yeh, I.C.: Modeling slump flow of concrete using second-order regressions and artificial neural networks. Cem. Concr. Compos. 29(6), 474–480 (2007) Yeh, I.C.: Modeling slump flow of concrete using second-order regressions and artificial neural networks. Cem. Concr. Compos. 29(6), 474–480 (2007)
25.
Zurück zum Zitat Yeh, I.: Modeling slump of concrete with fly ash and superplasticizer. Comput. Concr. 5(6), 559–572 (2008) Yeh, I.: Modeling slump of concrete with fly ash and superplasticizer. Comput. Concr. 5(6), 559–572 (2008)
26.
Zurück zum Zitat Yeh, I.: Prediction of workability of concrete using design of experiments for mixtures. Comput. Concr. 5(1), 1–20 (2008) Yeh, I.: Prediction of workability of concrete using design of experiments for mixtures. Comput. Concr. 5(1), 1–20 (2008)
27.
Zurück zum Zitat Ghafari, E.; Bandarabadi, M.; Costa, H.; Júlio, E.: Prediction of fresh and hardened state properties of UHPC: comparative study of statistical mixture design and an artificial neural network model. J. Mater. Civ. Eng. 27(11), 04015017 (2015) Ghafari, E.; Bandarabadi, M.; Costa, H.; Júlio, E.: Prediction of fresh and hardened state properties of UHPC: comparative study of statistical mixture design and an artificial neural network model. J. Mater. Civ. Eng. 27(11), 04015017 (2015)
28.
Zurück zum Zitat Sonebi, M.; Grünewald, S.; Cevik, A.; Walraven, J.: Modelling fresh properties of self-compacting concrete using neural network technique. Comput. Concr. 18(4), 903–920 (2016) Sonebi, M.; Grünewald, S.; Cevik, A.; Walraven, J.: Modelling fresh properties of self-compacting concrete using neural network technique. Comput. Concr. 18(4), 903–920 (2016)
29.
Zurück zum Zitat Kecman, V.: Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models. MIT Press, Cambridge (2001)MATH Kecman, V.: Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models. MIT Press, Cambridge (2001)MATH
30.
Zurück zum Zitat Pathak, S.S.; Sharma, S.; Sood, H.; Khitoliya, R.K.: Prediction of compressive strength of self compacting concrete with flyash and rice husk ash using adaptive neuro-fuzzy inference system. Editorial Preface 3(10), 112–118 (2012) Pathak, S.S.; Sharma, S.; Sood, H.; Khitoliya, R.K.: Prediction of compressive strength of self compacting concrete with flyash and rice husk ash using adaptive neuro-fuzzy inference system. Editorial Preface 3(10), 112–118 (2012)
31.
Zurück zum Zitat Raheman, A.; Modani, P.O.: Prediction of properties of self compacting concrete using artificial neural network. Int. J. Eng. Res. Appl. 3(4), 333–339 (2013) Raheman, A.; Modani, P.O.: Prediction of properties of self compacting concrete using artificial neural network. Int. J. Eng. Res. Appl. 3(4), 333–339 (2013)
32.
Zurück zum Zitat Malagavelli, V.; Manalel, P.A.: Modeling of compressive strength of admixture-based self compacting concrete using fuzzy logic and artificial neural networks. Asian J. Appl. Sci. 7(7), 536–551 (2014) Malagavelli, V.; Manalel, P.A.: Modeling of compressive strength of admixture-based self compacting concrete using fuzzy logic and artificial neural networks. Asian J. Appl. Sci. 7(7), 536–551 (2014)
33.
Zurück zum Zitat Yeh, I.C.: Modeling of strength of high-performance concrete using artificial neural networks. Cem. Concr. Res. 28(12), 1797–1808 (1998) Yeh, I.C.: Modeling of strength of high-performance concrete using artificial neural networks. Cem. Concr. Res. 28(12), 1797–1808 (1998)
34.
Zurück zum Zitat Lee, S.C.: Prediction of concrete strength using artificial neural networks. Eng. Struct. 25(7), 849–857 (2003) Lee, S.C.: Prediction of concrete strength using artificial neural networks. Eng. Struct. 25(7), 849–857 (2003)
35.
Zurück zum Zitat Tang, C.W.: Using radial basis function neural networks to model torsional strength of reinforced concrete beams. Comput. Concr. 3(5), 335–355 (2006) Tang, C.W.: Using radial basis function neural networks to model torsional strength of reinforced concrete beams. Comput. Concr. 3(5), 335–355 (2006)
36.
Zurück zum Zitat Hossain, K.; Lachemi, M.; Easa, S.M.: Artificial neural network model for the strength prediction of fully restrained RC slabs subjected to membrane action. Comput. Concr. 3(6), 439–454 (2006) Hossain, K.; Lachemi, M.; Easa, S.M.: Artificial neural network model for the strength prediction of fully restrained RC slabs subjected to membrane action. Comput. Concr. 3(6), 439–454 (2006)
37.
Zurück zum Zitat Tang, C.W.; Lin, Y.; Kuo, S.F.: Investigation on correlation between pulse velocity and compressive strength of concrete using ANNs. Comput. Concr. 4(6), 477–497 (2007) Tang, C.W.; Lin, Y.; Kuo, S.F.: Investigation on correlation between pulse velocity and compressive strength of concrete using ANNs. Comput. Concr. 4(6), 477–497 (2007)
38.
Zurück zum Zitat Pala, M.; Özbay, E.; Öztaş, A.; Yuce, M.I.: Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks. Constr. Build. Mater. 21(2), 384–394 (2007) Pala, M.; Özbay, E.; Öztaş, A.; Yuce, M.I.: Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks. Constr. Build. Mater. 21(2), 384–394 (2007)
39.
Zurück zum Zitat Topcu, I.B.; Sarıdemir, M.: Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic. Comput. Mater. Sci. 41(3), 305–311 (2008) Topcu, I.B.; Sarıdemir, M.: Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic. Comput. Mater. Sci. 41(3), 305–311 (2008)
40.
Zurück zum Zitat Altun, F.; Kişi, Ö.; Aydin, K.: Predicting the compressive strength of steel fiber added lightweight concrete using neural network. Comput. Mater. Sci. 42(2), 259–265 (2008) Altun, F.; Kişi, Ö.; Aydin, K.: Predicting the compressive strength of steel fiber added lightweight concrete using neural network. Comput. Mater. Sci. 42(2), 259–265 (2008)
41.
Zurück zum Zitat Khatibinia, M.; Feizbakhsh, A.; Mohseni, E.; Ranjbar, M.M.: Modeling mechanical strength of self-compacting mortar containing nanoparticles using wavelet-based support vector machine. Comput. Concr. 18(6), 1065–1082 (2016) Khatibinia, M.; Feizbakhsh, A.; Mohseni, E.; Ranjbar, M.M.: Modeling mechanical strength of self-compacting mortar containing nanoparticles using wavelet-based support vector machine. Comput. Concr. 18(6), 1065–1082 (2016)
42.
Zurück zum Zitat Asteris, P.G.; Kolovos, K.G.: Self-compacting concrete strength prediction using surrogate models. Neural Comput. Appl. 31(1), 409–424 (2019) Asteris, P.G.; Kolovos, K.G.: Self-compacting concrete strength prediction using surrogate models. Neural Comput. Appl. 31(1), 409–424 (2019)
43.
Zurück zum Zitat Asteris, P.G.; Kolovos, K.G.; Douvika, M.G.; Roinos, K.: Prediction of self-compacting concrete strength using artificial neural networks. Eur. J. Environ. Civ. Eng. 20(sup1), s102–s122 (2016) Asteris, P.G.; Kolovos, K.G.; Douvika, M.G.; Roinos, K.: Prediction of self-compacting concrete strength using artificial neural networks. Eur. J. Environ. Civ. Eng. 20(sup1), s102–s122 (2016)
44.
Zurück zum Zitat Asteris, P.G.; Roussis, P.C.; Douvika, M.G.: Feed-forward neural network prediction of the mechanical properties of sandcrete materials. Sensors 17(6), 1344 (2017) Asteris, P.G.; Roussis, P.C.; Douvika, M.G.: Feed-forward neural network prediction of the mechanical properties of sandcrete materials. Sensors 17(6), 1344 (2017)
45.
Zurück zum Zitat Asteris, P.G.; Mokos, V.G.: Concrete compressive strength using artificial neural networks. Neural Computing and Applications, 1–20 (2019) Asteris, P.G.; Mokos, V.G.: Concrete compressive strength using artificial neural networks. Neural Computing and Applications, 1–20 (2019)
46.
Zurück zum Zitat Li, Z.: Advanced Concrete Technology. Wiley, Hoboken (2011) Li, Z.: Advanced Concrete Technology. Wiley, Hoboken (2011)
47.
Zurück zum Zitat Ozawa, K.; Maekawa, K.; Kunishima, H.; Okamura, H.: Performance of concrete based on the durability design of concrete structures. Proc. Second East Asia Pacific Conf. Struct. Eng. Constr. 1, 445–456 (1989) Ozawa, K.; Maekawa, K.; Kunishima, H.; Okamura, H.: Performance of concrete based on the durability design of concrete structures. Proc. Second East Asia Pacific Conf. Struct. Eng. Constr. 1, 445–456 (1989)
48.
Zurück zum Zitat Okamura, H.; Ozawa, K.; Ouchi, M.: Self-compacting high performance concrete. Mag. Korea Concr. Inst. 7(5), 33–41 (1995) Okamura, H.; Ozawa, K.; Ouchi, M.: Self-compacting high performance concrete. Mag. Korea Concr. Inst. 7(5), 33–41 (1995)
49.
Zurück zum Zitat Brooks, J.J.; Johari, M.M.; Mazloom, M.: Effect of admixtures on the setting times of high-strength concrete. Cem. Concr. Compos. 22(4), 293–301 (2000) Brooks, J.J.; Johari, M.M.; Mazloom, M.: Effect of admixtures on the setting times of high-strength concrete. Cem. Concr. Compos. 22(4), 293–301 (2000)
50.
Zurück zum Zitat Wesche, K.: Fly Ash in Concrete: Properties and Performance (Rilem Report 7), Report of Technical Committee 67-FAB Use of Fly Ash in Building (2005) Wesche, K.: Fly Ash in Concrete: Properties and Performance (Rilem Report 7), Report of Technical Committee 67-FAB Use of Fly Ash in Building (2005)
51.
Zurück zum Zitat Kurita, M.; Nomura, T.: Highly-flowable steel fiber-reinforced concrete containing fly ash. In: Malhotra, V.M. (ed) Proceedings of the Sixth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, Vol. 178, pp 159–176. ACI Special Publication (1998) Kurita, M.; Nomura, T.: Highly-flowable steel fiber-reinforced concrete containing fly ash. In: Malhotra, V.M. (ed) Proceedings of the Sixth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, Vol. 178, pp 159–176. ACI Special Publication (1998)
52.
Zurück zum Zitat Lovell, C.K.; Schmidt, P.: A comparison of alternative approaches to the measurement of productive efficiency. In: Applications of Modern Production Theory: Efficiency and Productivity, pp. 3–32. Springer, Dordrecht (1988) Lovell, C.K.; Schmidt, P.: A comparison of alternative approaches to the measurement of productive efficiency. In: Applications of Modern Production Theory: Efficiency and Productivity, pp. 3–32. Springer, Dordrecht (1988)
53.
Zurück zum Zitat Charnes, A.; Cooper, W.W.; Golany, B.; Seiford, L.; Stutz, J.: Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions. J. Econom. 30, 16–29 (1985)MathSciNetMATH Charnes, A.; Cooper, W.W.; Golany, B.; Seiford, L.; Stutz, J.: Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions. J. Econom. 30, 16–29 (1985)MathSciNetMATH
54.
Zurück zum Zitat Zhu, J.: Multi-factor performance measure model with an application to Fortune 500 companies. Eur. J. Oper. Res. 123(1), 105–124 (2000)MATH Zhu, J.: Multi-factor performance measure model with an application to Fortune 500 companies. Eur. J. Oper. Res. 123(1), 105–124 (2000)MATH
55.
Zurück zum Zitat Zhu, J.: Quantitative Models for Performance Evaluation and Benchmarking: Data Envelopment Analysis with Spreadsheets and DEA Excel Solver. Kluwer Academic Publishers, Boston (2002) Zhu, J.: Quantitative Models for Performance Evaluation and Benchmarking: Data Envelopment Analysis with Spreadsheets and DEA Excel Solver. Kluwer Academic Publishers, Boston (2002)
56.
Zurück zum Zitat Charnes, A.; Cooper, W.W.; Rhodes, E.: Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2(6), 429–444 (1978)MathSciNetMATH Charnes, A.; Cooper, W.W.; Rhodes, E.: Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2(6), 429–444 (1978)MathSciNetMATH
57.
Zurück zum Zitat Dadashi, A.; Mirbaha, B.: Prioritizing highway safety improvement projects: a Monte-Carlo based data envelopment analysis approach. Accid. Anal. Prev. 123, 387–395 (2019) Dadashi, A.; Mirbaha, B.: Prioritizing highway safety improvement projects: a Monte-Carlo based data envelopment analysis approach. Accid. Anal. Prev. 123, 387–395 (2019)
58.
Zurück zum Zitat Li, H.X.; Li, Y.; Jiang, B.; Zhang, L.; Wu, X.; Lin, J.: Energy performance optimization of building envelope retrofit through integrated orthogonal arrays with data envelopment analysis. Renew. Energy 149, 1414–1423 (2020) Li, H.X.; Li, Y.; Jiang, B.; Zhang, L.; Wu, X.; Lin, J.: Energy performance optimization of building envelope retrofit through integrated orthogonal arrays with data envelopment analysis. Renew. Energy 149, 1414–1423 (2020)
59.
Zurück zum Zitat Palafox-Alcantar, P.G.; Hunt, D.V.L.; Rogers, C.D.F.: The complementary use of game theory for the circular economy: a review of waste management decision-making methods in civil engineering. Waste Manag. 102, 598–612 (2020) Palafox-Alcantar, P.G.; Hunt, D.V.L.; Rogers, C.D.F.: The complementary use of game theory for the circular economy: a review of waste management decision-making methods in civil engineering. Waste Manag. 102, 598–612 (2020)
60.
Zurück zum Zitat Zhang, J.; Li, H.; Xia, B.; Skitmore, M.: Impact of environment regulation on the efficiency of regional construction industry: a 3-stage data envelopment analysis (DEA). J. Clean. Prod. 200, 770–780 (2018) Zhang, J.; Li, H.; Xia, B.; Skitmore, M.: Impact of environment regulation on the efficiency of regional construction industry: a 3-stage data envelopment analysis (DEA). J. Clean. Prod. 200, 770–780 (2018)
61.
Zurück zum Zitat Jiang, H.; Hua, M.; Zhang, J.; Cheng, P.; Ye, Z.; Huang, M.; Jin, Q.: Sustainability efficiency assessment of wastewater treatment plants in China: a data envelopment analysis based on cluster benchmarking. J. Clean. Prod. 244, 118729 (2020) Jiang, H.; Hua, M.; Zhang, J.; Cheng, P.; Ye, Z.; Huang, M.; Jin, Q.: Sustainability efficiency assessment of wastewater treatment plants in China: a data envelopment analysis based on cluster benchmarking. J. Clean. Prod. 244, 118729 (2020)
62.
Zurück zum Zitat Banker, R.D.; Charnes, A.; Cooper, W.W.: Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 30(9), 1078–1092 (1984)MATH Banker, R.D.; Charnes, A.; Cooper, W.W.: Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 30(9), 1078–1092 (1984)MATH
63.
Zurück zum Zitat Liu, F.H.F.; Peng, H.H.: Ranking of units on the DEA frontier with common weights. Comput. Oper. Res. 35(5), 1624–1637 (2008)MATH Liu, F.H.F.; Peng, H.H.: Ranking of units on the DEA frontier with common weights. Comput. Oper. Res. 35(5), 1624–1637 (2008)MATH
64.
Zurück zum Zitat Balf, F.R.; Rezai, H.Z.; Jahanshahloo, G.R.; Lotfi, F.H.: Ranking efficient DMUs using the Tchebycheff norm. Appl. Math. Model. 36(1), 46–56 (2012)MathSciNetMATH Balf, F.R.; Rezai, H.Z.; Jahanshahloo, G.R.; Lotfi, F.H.: Ranking efficient DMUs using the Tchebycheff norm. Appl. Math. Model. 36(1), 46–56 (2012)MathSciNetMATH
65.
Zurück zum Zitat Joro, T.; Korhonen, P.; Wallenius, J.: Structural comparison of data envelopment analysis and multiple objective linear programming. Manag. Sci. 44(7), 962–970 (1998)MATH Joro, T.; Korhonen, P.; Wallenius, J.: Structural comparison of data envelopment analysis and multiple objective linear programming. Manag. Sci. 44(7), 962–970 (1998)MATH
66.
Zurück zum Zitat Wang, J.; Liu, S.: A multiple objective DEA projection model for some factors varying in restricted ranges. J. Xidian Univ. 27(1), 39–43 (2000). (in Chinese) Wang, J.; Liu, S.: A multiple objective DEA projection model for some factors varying in restricted ranges. J. Xidian Univ. 27(1), 39–43 (2000). (in Chinese)
67.
Zurück zum Zitat Zhu, W.; Bartos, P.J.M.: Permeation properties of self-compacting concrete. Cem. Concr. Res. 33(6), 921–926 (2003) Zhu, W.; Bartos, P.J.M.: Permeation properties of self-compacting concrete. Cem. Concr. Res. 33(6), 921–926 (2003)
68.
Zurück zum Zitat Naik, T.R.; Kumar, R.; Ramme, B.W.; Canpolat, F.: Development of high-strength, economical self-consolidating concrete. Constr. Build. Mater. 30, 463–469 (2012) Naik, T.R.; Kumar, R.; Ramme, B.W.; Canpolat, F.: Development of high-strength, economical self-consolidating concrete. Constr. Build. Mater. 30, 463–469 (2012)
69.
Zurück zum Zitat Turk, K.; Karatas, M.; Gonen, T.: Effect of fly ash and silica fume on compressive strength, sorptivity and carbonation of SCC. KSCE J. Civ. Eng. 17(1), 202–209 (2013) Turk, K.; Karatas, M.; Gonen, T.: Effect of fly ash and silica fume on compressive strength, sorptivity and carbonation of SCC. KSCE J. Civ. Eng. 17(1), 202–209 (2013)
70.
Zurück zum Zitat Liu, M.: Self-compacting concrete with different levels of pulverized fuel ash. Constr. Build. Mater. 24(7), 1245–1252 (2010) Liu, M.: Self-compacting concrete with different levels of pulverized fuel ash. Constr. Build. Mater. 24(7), 1245–1252 (2010)
Metadaten
Titel
A New Method for Predicting the Ingredients of Self-Compacting Concrete (SCC) Including Fly Ash (FA) Using Data Envelopment Analysis (DEA)
verfasst von
Farzad Rezai Balf
Hamidreza Mahmoodi Kordkheili
Alireza Mahmoodi Kordkheili
Publikationsdatum
12.10.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 5/2021
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04927-3

Weitere Artikel der Ausgabe 5/2021

Arabian Journal for Science and Engineering 5/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.