Skip to main content
Erschienen in: Autonomous Robots 4/2021

25.06.2021

A novel adaptive iterative learning control approach and human-in-the-loop control pattern for lower limb rehabilitation robot in disturbances environment

verfasst von: Zhongbo Sun, Feng Li, Xiaoqin Duan, Long Jin, Yufeng Lian, Shuaishi Liu, Keping Liu

Erschienen in: Autonomous Robots | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article presents a novel adaptive iterative learning control (AILC), and designs a human-in-loop control pattern (HIL-CP), which simulates the proposed approach using different lower limb rehabilitation robot models. The stability of the AILC controller is proposed and verified via a Lyapunov-like function, where novel controller shows strong robustness in disturbances environment. Based on AILC, the core of the HIL-CP interactive control mode is to estimate the human surface electromyography by neural network model and get the real-time desired trajectory to iterate out the optimal actual tracking trajectory, which reduce the tracking error quickly and ensure the rehabilitation training effect of patients. Furthermore, the MATLAB software is employed to conduct simulation experiments the proposed approach. The simulation results show that the HIL-CP is highly efficient and rapidly convergent in a satisfied degree. The angle error is \({\mathrm{{0.25}}^\text {o}}\pm {\mathrm{{0.2}}^\text {o}} \) for patients and \({\mathrm{{0.03}}^\text {o}}\pm {\mathrm{{0.02}}^\text {o}} \) for healthy people. Compared with the existing sliding mode controller, it is proven that the AILC controller is much more effective and noise-tolerant ability in the presence of bounded nonlinear disturbance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Arimoto, S., Kawamura, S., & Miyazaki, F. (1984). Bettering operation of robotics by learning. Journal of Robotic System, 1(2), 123–140.CrossRef Arimoto, S., Kawamura, S., & Miyazaki, F. (1984). Bettering operation of robotics by learning. Journal of Robotic System, 1(2), 123–140.CrossRef
Zurück zum Zitat Choi, W., Won, J., Lee, J., et al. (2017). Low stiffness design and hysteresis compensation torque control of SEA for active exercise rehabilitation robots. Autonomous Robots, 41(5), 1221–1242.CrossRef Choi, W., Won, J., Lee, J., et al. (2017). Low stiffness design and hysteresis compensation torque control of SEA for active exercise rehabilitation robots. Autonomous Robots, 41(5), 1221–1242.CrossRef
Zurück zum Zitat Freeman, C. T. (2014). Newton-method based iterative learning control for robot-assisted rehabilitation using FES. Mechatronics, 24(8), 934–943.CrossRef Freeman, C. T. (2014). Newton-method based iterative learning control for robot-assisted rehabilitation using FES. Mechatronics, 24(8), 934–943.CrossRef
Zurück zum Zitat Freeman, T. C. (2015). Upper limb electrical stimulation using input–output linearization and iterative learning control. IEEE Transactions on Control Systems Technology, 23(4), 1546–1554.CrossRef Freeman, T. C. (2015). Upper limb electrical stimulation using input–output linearization and iterative learning control. IEEE Transactions on Control Systems Technology, 23(4), 1546–1554.CrossRef
Zurück zum Zitat Geravand, M., Korondi, P. Z., Werner, C., et al. (2017). Human sit-to-stand transfer modeling towards intuitive and biologically-inspired robot assistance. Autonomous Robots, 41(3), 575–592.CrossRef Geravand, M., Korondi, P. Z., Werner, C., et al. (2017). Human sit-to-stand transfer modeling towards intuitive and biologically-inspired robot assistance. Autonomous Robots, 41(3), 575–592.CrossRef
Zurück zum Zitat Gross, H. M., Scheidig, A., Debes, K., et al. (2017). ROREAS: Robot coach for walking and orientation training in clinical post-stroke rehabilitationprototype implementation and evaluation in field trials. Autonomous Robots, 41(3), 679–698.CrossRef Gross, H. M., Scheidig, A., Debes, K., et al. (2017). ROREAS: Robot coach for walking and orientation training in clinical post-stroke rehabilitationprototype implementation and evaluation in field trials. Autonomous Robots, 41(3), 679–698.CrossRef
Zurück zum Zitat Hesse, S., Schmidt, H., Werner, C., & Bardeleben, A. (2003). Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Current Opinion in Neurology, 16(6), 705–710.CrossRef Hesse, S., Schmidt, H., Werner, C., & Bardeleben, A. (2003). Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Current Opinion in Neurology, 16(6), 705–710.CrossRef
Zurück zum Zitat Jamwal, P. K., Xie, S. Q., & Hussain, S. (2014). An adaptive wearable parallel robot for the treatment of ankle injuries. IEEE/ASME Transactions on Mechatronics, 19(1), 64–75.CrossRef Jamwal, P. K., Xie, S. Q., & Hussain, S. (2014). An adaptive wearable parallel robot for the treatment of ankle injuries. IEEE/ASME Transactions on Mechatronics, 19(1), 64–75.CrossRef
Zurück zum Zitat Jarrett, C., & Mcdaid, A. (2017). Robust control of a cable-driven soft exoskeleton joint for intrinsic human-robot interaction. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(7), 976–986.CrossRef Jarrett, C., & Mcdaid, A. (2017). Robust control of a cable-driven soft exoskeleton joint for intrinsic human-robot interaction. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(7), 976–986.CrossRef
Zurück zum Zitat Jin, L., Huang, Z. G., Li, Y. H., Sun, Z. B., Li, H. W., & Zhang, J. L. (2019). On modified multi-output Chebyshev-polynomial feed-forward neural network for pattern classification of wine regions. IEEE Access, 7, 1973–1980.CrossRef Jin, L., Huang, Z. G., Li, Y. H., Sun, Z. B., Li, H. W., & Zhang, J. L. (2019). On modified multi-output Chebyshev-polynomial feed-forward neural network for pattern classification of wine regions. IEEE Access, 7, 1973–1980.CrossRef
Zurück zum Zitat Jin, L., Li, S., & Hu, B. (2018). RNN models for dynamic matrix inversion: A control-theoretical perspective. IEEE Transactions on Industrial Informatics, 14, 189–199.CrossRef Jin, L., Li, S., & Hu, B. (2018). RNN models for dynamic matrix inversion: A control-theoretical perspective. IEEE Transactions on Industrial Informatics, 14, 189–199.CrossRef
Zurück zum Zitat Jin, L., Li, S., Xiao, L., Lu, R. B., & Liao, B. L. (2018). Cooperative motion generation in a distributed network of redundant robot manipulators with noises. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48, 1715–1724.CrossRef Jin, L., Li, S., Xiao, L., Lu, R. B., & Liao, B. L. (2018). Cooperative motion generation in a distributed network of redundant robot manipulators with noises. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48, 1715–1724.CrossRef
Zurück zum Zitat Jin, L., Zhang, Y., Li, S., & Zhang, Y. (2016). Modified ZNN for time-varying quadratic programming with inherent tolerance to noises and its application to kinematic redundancy resolution of robot manipulators. IEEE Transactions on Industrial Electronics, 63, 6978–6988.CrossRef Jin, L., Zhang, Y., Li, S., & Zhang, Y. (2016). Modified ZNN for time-varying quadratic programming with inherent tolerance to noises and its application to kinematic redundancy resolution of robot manipulators. IEEE Transactions on Industrial Electronics, 63, 6978–6988.CrossRef
Zurück zum Zitat Kawamoto, H., & Sankair, Y. (2012). Power assist method based on phase sequence and muscle force condition for HAL. Advanced Robotics, 219(7), 717–734.CrossRef Kawamoto, H., & Sankair, Y. (2012). Power assist method based on phase sequence and muscle force condition for HAL. Advanced Robotics, 219(7), 717–734.CrossRef
Zurück zum Zitat Langhorne, P., Coupar, F., & Pollock, A. (2009). Motor recovery after stroke: A systematic review. The Lancet Neurology, 8(8), 714–754.CrossRef Langhorne, P., Coupar, F., & Pollock, A. (2009). Motor recovery after stroke: A systematic review. The Lancet Neurology, 8(8), 714–754.CrossRef
Zurück zum Zitat Li, X., Liu, Y. H., & Yu, H. (2018). Iterative learning impedance control for rehabilitation robots driven by series elastic actuators. Automatica, 90, 1–7.MathSciNetCrossRef Li, X., Liu, Y. H., & Yu, H. (2018). Iterative learning impedance control for rehabilitation robots driven by series elastic actuators. Automatica, 90, 1–7.MathSciNetCrossRef
Zurück zum Zitat Li, X., Pan, Y., Chen, G., & Yu, H. (2017). Multi-modal control scheme for rehabilitation robotic exoskeletons. The International Journal of Robotics Research, 36(5–7), 759–777.CrossRef Li, X., Pan, Y., Chen, G., & Yu, H. (2017). Multi-modal control scheme for rehabilitation robotic exoskeletons. The International Journal of Robotics Research, 36(5–7), 759–777.CrossRef
Zurück zum Zitat Li, X., Pan, Y., Gong, C., et al. (2017). Adaptive human-robot interaction control for robots driven by series elastic actuators. IEEE Transactions on Robotics, 33(1), 169–182.CrossRef Li, X., Pan, Y., Gong, C., et al. (2017). Adaptive human-robot interaction control for robots driven by series elastic actuators. IEEE Transactions on Robotics, 33(1), 169–182.CrossRef
Zurück zum Zitat Lu, R., Li, Z., Su, C. Y., et al. (2014). Development and learning control of a human limb with a rehabilitation exoskeleton. IEEE Transactions on Industrial Electronics, 61(7), 3776–3785.CrossRef Lu, R., Li, Z., Su, C. Y., et al. (2014). Development and learning control of a human limb with a rehabilitation exoskeleton. IEEE Transactions on Industrial Electronics, 61(7), 3776–3785.CrossRef
Zurück zum Zitat Meng, W., Liu, Q., Zhou, Z. D., et al. (2015). Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics, 31, 132–145.CrossRef Meng, W., Liu, Q., Zhou, Z. D., et al. (2015). Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics, 31, 132–145.CrossRef
Zurück zum Zitat Mushage, B. O., Chedjou, J. C., & Kyamakya, K. (2017). Fuzzy neural network and observer-based fault-tolerant adaptive nonlinear control of uncertain 5-DOF upper-limb exoskeleton robot for passive rehabilitation. Nonlinear Dynamics, 87(3), 2021–2037.CrossRef Mushage, B. O., Chedjou, J. C., & Kyamakya, K. (2017). Fuzzy neural network and observer-based fault-tolerant adaptive nonlinear control of uncertain 5-DOF upper-limb exoskeleton robot for passive rehabilitation. Nonlinear Dynamics, 87(3), 2021–2037.CrossRef
Zurück zum Zitat Neumann, D. A. (2010). Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation. Amsterdam: Mosby Elsevier. Neumann, D. A. (2010). Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation. Amsterdam: Mosby Elsevier.
Zurück zum Zitat Pratt, J. E., Krupp, B. T., Morse, C. J., & Collins, S. H. (2004). The roboKnee: an exoskeleton for enhancing strength and endurance during walking. Pratt, J. E., Krupp, B. T., Morse, C. J., & Collins, S. H. (2004). The roboKnee: an exoskeleton for enhancing strength and endurance during walking.
Zurück zum Zitat Quintero, D., Villarreal, D. J., Lambert, D. J., et al. (2018). Continuous-phase control of a powered kneecankle prosthesis: amputee experiments across speeds and inclines. IEEE Transactions on Robotics, 34(3), 686–701.CrossRef Quintero, D., Villarreal, D. J., Lambert, D. J., et al. (2018). Continuous-phase control of a powered kneecankle prosthesis: amputee experiments across speeds and inclines. IEEE Transactions on Robotics, 34(3), 686–701.CrossRef
Zurück zum Zitat Riener, R., Lunenburger, L., Jezernik, S., Anderschitz, M., Colombo, G., & Dietz, V. (2005). Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13(3), 380C394 Riener, R., Lunenburger, L., Jezernik, S., Anderschitz, M., Colombo, G., & Dietz, V. (2005). Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13(3), 380C394
Zurück zum Zitat Roy, A., Krebs, H. I., Williams, D. J., et al. (2009). Robot-aided neurorehabilitation: A novel robot for ankle rehabilitation. IEEE Transactions on Robotics, 25(3), 569–582.CrossRef Roy, A., Krebs, H. I., Williams, D. J., et al. (2009). Robot-aided neurorehabilitation: A novel robot for ankle rehabilitation. IEEE Transactions on Robotics, 25(3), 569–582.CrossRef
Zurück zum Zitat Shen, P., Zhang, X., & Fang, Y. (2018). Complete and time-optimal path-constrained trajectory planning with torque and velocity constraints: Theory and applications. IEEE/ASME Transactions on Mechatronics, 23(2), 735–746.CrossRef Shen, P., Zhang, X., & Fang, Y. (2018). Complete and time-optimal path-constrained trajectory planning with torque and velocity constraints: Theory and applications. IEEE/ASME Transactions on Mechatronics, 23(2), 735–746.CrossRef
Zurück zum Zitat Sun, Z. B., Duan, X. Q., Li, F., et al., (2019). RBF Neural Network-sliding model control approach for lower limb rehabilitation robot based on gait trajectories of sEMG estimation. International Conference on Intelligent Control and Information Processing. Marrakesh, Morocco, December 14–19 Sun, Z. B., Duan, X. Q., Li, F., et al., (2019). RBF Neural Network-sliding model control approach for lower limb rehabilitation robot based on gait trajectories of sEMG estimation. International Conference on Intelligent Control and Information Processing. Marrakesh, Morocco, December 14–19
Zurück zum Zitat Sun, Z. B., Li, F., Zhang, B. C., et al. (2019). Different modified zeroing neural dynamics with inherent tolerance to noises for time-varying reciprocal problems: a control-theoretic approach. Neurocomputing, 337(14), 165–179.CrossRef Sun, Z. B., Li, F., Zhang, B. C., et al. (2019). Different modified zeroing neural dynamics with inherent tolerance to noises for time-varying reciprocal problems: a control-theoretic approach. Neurocomputing, 337(14), 165–179.CrossRef
Zurück zum Zitat Sun, Z. B., Tian, Y. T., Li, H. Y., & Wang, J. (2016). A superlinear convergence feasible sequential quadratic programming algorithm for bipedal dynamic walking robot via discrete mechanics and optimal control. Optimal Control Applications and Methods, 37(6), 1139–1161.MathSciNetCrossRef Sun, Z. B., Tian, Y. T., Li, H. Y., & Wang, J. (2016). A superlinear convergence feasible sequential quadratic programming algorithm for bipedal dynamic walking robot via discrete mechanics and optimal control. Optimal Control Applications and Methods, 37(6), 1139–1161.MathSciNetCrossRef
Zurück zum Zitat Sun, Z. B., Tian, Y. T., & Wang, J. (2018). A novel projected Fletcher-Reeves conjugate gradient approach for finite-time optimal robust controller of linear constraints optimization problem: Application to bipedal walking robots. Optimal Control Applications and Methods, 39(1), 130–159.MathSciNetCrossRef Sun, Z. B., Tian, Y. T., & Wang, J. (2018). A novel projected Fletcher-Reeves conjugate gradient approach for finite-time optimal robust controller of linear constraints optimization problem: Application to bipedal walking robots. Optimal Control Applications and Methods, 39(1), 130–159.MathSciNetCrossRef
Zurück zum Zitat Tsukahara, A., Hasegawa, Y., & Sankai, Y. (2011). Gait support for complete spinal cord injury patient by synchronized leg-swing with HAL. IEEE/RSJ International Conference on Intelligent Robots Systems (pp. 1737–1742). Tsukahara, A., Hasegawa, Y., & Sankai, Y. (2011). Gait support for complete spinal cord injury patient by synchronized leg-swing with HAL. IEEE/RSJ International Conference on Intelligent Robots Systems (pp. 1737–1742).
Zurück zum Zitat Vecchio, D. D., Marino, R., & Tomei, P. (2004). Adaptive iterative learning control for robot manipulators. Automatica, 40, 1195–1203.MathSciNetCrossRef Vecchio, D. D., Marino, R., & Tomei, P. (2004). Adaptive iterative learning control for robot manipulators. Automatica, 40, 1195–1203.MathSciNetCrossRef
Zurück zum Zitat Wu, J. P., & Gao, J. W. (2016). The design and control of a 3DOF lower limb rehabilitation robot. Mechatronics, 33, 13–22.CrossRef Wu, J. P., & Gao, J. W. (2016). The design and control of a 3DOF lower limb rehabilitation robot. Mechatronics, 33, 13–22.CrossRef
Zurück zum Zitat Zhang, X., Chen, X., Farzadpour, F., & Fang, Y. (2018). A visual distance approach for multi-camera deployment with coverage optimization. IEEE/ASME Transactions on Mechatronics, 23(3), 1007–1018.CrossRef Zhang, X., Chen, X., Farzadpour, F., & Fang, Y. (2018). A visual distance approach for multi-camera deployment with coverage optimization. IEEE/ASME Transactions on Mechatronics, 23(3), 1007–1018.CrossRef
Zurück zum Zitat Zhang, J. J., Fiers, P., Witte, K. A., et al. (2017). Human-in-the-loop optimization of exoskeleton assistance during walking. Science, 356(6344), 1280–1284.CrossRef Zhang, J. J., Fiers, P., Witte, K. A., et al. (2017). Human-in-the-loop optimization of exoskeleton assistance during walking. Science, 356(6344), 1280–1284.CrossRef
Zurück zum Zitat Zhu, X. F., & Wang, J. H. (2018). Double iterative compensation learning control for active training of upper limb rehabilitation robot. International Journal of Control, Automation and Systems, 16, 1–11.CrossRef Zhu, X. F., & Wang, J. H. (2018). Double iterative compensation learning control for active training of upper limb rehabilitation robot. International Journal of Control, Automation and Systems, 16, 1–11.CrossRef
Zurück zum Zitat Zoss, A. B., Kazerooni, H., & Chu, A. (2006). Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Transactions on Mechatronics, 222(8), 128–138.CrossRef Zoss, A. B., Kazerooni, H., & Chu, A. (2006). Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Transactions on Mechatronics, 222(8), 128–138.CrossRef
Metadaten
Titel
A novel adaptive iterative learning control approach and human-in-the-loop control pattern for lower limb rehabilitation robot in disturbances environment
verfasst von
Zhongbo Sun
Feng Li
Xiaoqin Duan
Long Jin
Yufeng Lian
Shuaishi Liu
Keping Liu
Publikationsdatum
25.06.2021
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 4/2021
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-021-09988-3

Weitere Artikel der Ausgabe 4/2021

Autonomous Robots 4/2021 Zur Ausgabe

Neuer Inhalt