Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 7-8/2019

13.11.2019 | ORIGINAL ARTICLE

A novel analytical filling time chart for design optimization of flip-chip underfill encapsulation process

verfasst von: Fei Chong Ng, M. Yusuf Tura Ali, Aizat Abas, C. Y. Khor, Z. Samsudin, M. Z. Abdullah

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 7-8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Underfill encapsulation process regularly encounters productivity issue of long filling time that incurs additional manufacturing costs. The package was optimized to attain least filling time while retaining the miniature package size. This paper presents a new analytical generalized filling time chart that was generated using the latest regional segregation-based analytical filling time model. The governing model was well-validated to the industrial underfill benchmark data with discrepancy of less than 10.42%. The filling time chart gives non-dimensionalized filling times at various combinations of bump pitch, gap height, and contact angle. Subsequently, another chart that gives the filling time coefficient was derived from the filling time chart to compute the instantaneous filling time directly. Interestingly, two variation trends of bump pitch were observed from the filling time chart that were distinguishable based on the critical contact angle. When the contact angle exceeds its critical value, there exists the critical bump pitch that restricted the miniature design of the package. On contrary, all past literatures only elucidated one variation trend of bump pitch without introduced the critical contact angle. Overall, the analytical filling time chart benefited the optimization study as it concisely composed all parametric variation trends of filling time as well as the criticality of underfill parameters. Thus, time and effort can be greatly reduced upon compared with the conventional numerical-based optimization work, without compromising the accuracy aspect.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ng FC, Abas A, Gan ZL, Abdullah MZ, Che Ani F, Tura Ali MY (2017) Discrete phase method study of ball grid array underfill process using nano-silica filler-reinforced composite-encapsulant with varying filler loadings. Microelectron Reliab 72:45–64CrossRef Ng FC, Abas A, Gan ZL, Abdullah MZ, Che Ani F, Tura Ali MY (2017) Discrete phase method study of ball grid array underfill process using nano-silica filler-reinforced composite-encapsulant with varying filler loadings. Microelectron Reliab 72:45–64CrossRef
2.
Zurück zum Zitat Ng FC, Abas MA, Abdullah MZ, Ishak MHH, Chong GY (2017) CUF scaling effect on contact angle and threshold pressure. Solder Surf Mt Tech 29(4):173–190CrossRef Ng FC, Abas MA, Abdullah MZ, Ishak MHH, Chong GY (2017) CUF scaling effect on contact angle and threshold pressure. Solder Surf Mt Tech 29(4):173–190CrossRef
3.
Zurück zum Zitat Lee SH, Sung J, Kim SE (2010) Dynamic flow measurement of capillary underfill through a bump array in flip chip package. Microelectron Reliab 50:2078–2083CrossRef Lee SH, Sung J, Kim SE (2010) Dynamic flow measurement of capillary underfill through a bump array in flip chip package. Microelectron Reliab 50:2078–2083CrossRef
4.
Zurück zum Zitat Wan JW, Zhang WJ, Bergstrom DJ (2008) Experimental verification of models for underfill flow driven by capillary forces in flip-chip packaging. Microelectron Reliab 48:425–430CrossRef Wan JW, Zhang WJ, Bergstrom DJ (2008) Experimental verification of models for underfill flow driven by capillary forces in flip-chip packaging. Microelectron Reliab 48:425–430CrossRef
5.
Zurück zum Zitat Ng FC, Abas A, Ishak MHH, Abdullah MZ, Abdul Aziz MS (2016) Effect of thermocapillary action in the underfill encapsulation of multi-stack ball grid array. Microelectron Reliab 66:143–160CrossRef Ng FC, Abas A, Ishak MHH, Abdullah MZ, Abdul Aziz MS (2016) Effect of thermocapillary action in the underfill encapsulation of multi-stack ball grid array. Microelectron Reliab 66:143–160CrossRef
6.
Zurück zum Zitat Ng FC, Abas A, Abdullah MZ (2018) Effect of solder bump shapes on underfill flow in flip-chip encapsulation using analytical, numerical and PIV experimental approaches. Microelectron Reliab 81:41–63CrossRef Ng FC, Abas A, Abdullah MZ (2018) Effect of solder bump shapes on underfill flow in flip-chip encapsulation using analytical, numerical and PIV experimental approaches. Microelectron Reliab 81:41–63CrossRef
7.
Zurück zum Zitat Han S, Wang KK (1997) Analysis of the flow of encapsulant during underfill encapsulation of flip-chips. IEEE Trans Compon Packag Manuf Technol B 20(4):424–433 Han S, Wang KK (1997) Analysis of the flow of encapsulant during underfill encapsulation of flip-chips. IEEE Trans Compon Packag Manuf Technol B 20(4):424–433
8.
Zurück zum Zitat Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273–283CrossRef Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273–283CrossRef
9.
Zurück zum Zitat Young W-B (2003) Anisotropic behavior of the capillary action in flip chip underfill. Microelectron J 34:1031–1036CrossRef Young W-B (2003) Anisotropic behavior of the capillary action in flip chip underfill. Microelectron J 34:1031–1036CrossRef
10.
Zurück zum Zitat Young W-B (2004) Capillary impregnation into cylinder banks. J Colloid Interface Sci 273:576–580CrossRef Young W-B (2004) Capillary impregnation into cylinder banks. J Colloid Interface Sci 273:576–580CrossRef
11.
Zurück zum Zitat Wan JW, Zhang WJ, Bergstrom DJ (2005) An analytical model for predicting the underfill flow characteristics in flip-chip encapsulation. IEEE Trans Adv Packag 28(3):481–487CrossRef Wan JW, Zhang WJ, Bergstrom DJ (2005) An analytical model for predicting the underfill flow characteristics in flip-chip encapsulation. IEEE Trans Adv Packag 28(3):481–487CrossRef
12.
Zurück zum Zitat Yao XJ, Wang ZD, Zhang WJ (2014) A new analysis of the capillary driving pressure for underfill flow in flip-chip packaging. IEEE Trans Compon Packag Manuf Technol 4(9):1534–1544 Yao XJ, Wang ZD, Zhang WJ (2014) A new analysis of the capillary driving pressure for underfill flow in flip-chip packaging. IEEE Trans Compon Packag Manuf Technol 4(9):1534–1544
13.
Zurück zum Zitat Yao XJ, Wang ZD, Zhang WJ (2014) A new model for permeability of porous medium in the case of flip-chip packaging. IEEE Trans Compon Packag Manuf Technol 4(8):1265–1275 Yao XJ, Wang ZD, Zhang WJ (2014) A new model for permeability of porous medium in the case of flip-chip packaging. IEEE Trans Compon Packag Manuf Technol 4(8):1265–1275
14.
Zurück zum Zitat Ng FC, Abas A, Abdullah MZ (2019) “Regional segregation with spatial considerations based analytical filling time model for non-Newtonian power-law underfill fluid in flip-chip encapsulation”, J Electron Packag. 141(4): 041009 Ng FC, Abas A, Abdullah MZ (2019) “Regional segregation with spatial considerations based analytical filling time model for non-Newtonian power-law underfill fluid in flip-chip encapsulation”, J Electron Packag. 141(4): 041009
15.
Zurück zum Zitat Wang J (2005) Flow time measurements for underfills in flip-chip packaging. IEEE Trans Compon Packag Manuf Technol 28(2):366–370 Wang J (2005) Flow time measurements for underfills in flip-chip packaging. IEEE Trans Compon Packag Manuf Technol 28(2):366–370
16.
Zurück zum Zitat Khor CY, Abdullah MZ (2012) Optimization of IC encapsulation considering fluid/structure interaction using response surface methodology. Simul Model Pract Theory 29:109–122CrossRef Khor CY, Abdullah MZ (2012) Optimization of IC encapsulation considering fluid/structure interaction using response surface methodology. Simul Model Pract Theory 29:109–122CrossRef
17.
Zurück zum Zitat Ishak MHH, Ismail F, Abdul Aziz MS, Abdullah MZ, Abas A (2019) Optimization of 3D IC stacking chip on molded encapsulation process: a response surface methodology approach, The International Journal of Advanced Manufacturing Technology, pp. 1–15 Ishak MHH, Ismail F, Abdul Aziz MS, Abdullah MZ, Abas A (2019) Optimization of 3D IC stacking chip on molded encapsulation process: a response surface methodology approach, The International Journal of Advanced Manufacturing Technology, pp. 1–15
18.
Zurück zum Zitat Young W-B, Yang W-L (2002) The effect of solder bump pitch on the underfill flow. IEEE Trans Adv Packag 25(4):537–542CrossRef Young W-B, Yang W-L (2002) The effect of solder bump pitch on the underfill flow. IEEE Trans Adv Packag 25(4):537–542CrossRef
19.
Zurück zum Zitat Young W-B, Yang W-L (2006) Underfill on flip-chip: the effect of contact angle and solder bump arrangement. IEEE Trans Adv Packag 29(3):647–653CrossRef Young W-B, Yang W-L (2006) Underfill on flip-chip: the effect of contact angle and solder bump arrangement. IEEE Trans Adv Packag 29(3):647–653CrossRef
20.
Zurück zum Zitat Khor CY, Abdullah MZ, Che Ani F (2012) Underfill process for two parallel plates and flip chip packaging. Int Commun Heat Mass 39(8):1205–1212CrossRef Khor CY, Abdullah MZ, Che Ani F (2012) Underfill process for two parallel plates and flip chip packaging. Int Commun Heat Mass 39(8):1205–1212CrossRef
21.
Zurück zum Zitat Wan JW, Zhang WJ, Bergstrom DJ (2007) A theoretical analysis of the concept of critical clearance toward a design methodology for the flip-chip package. J Electron Packag 129:473–478CrossRef Wan JW, Zhang WJ, Bergstrom DJ (2007) A theoretical analysis of the concept of critical clearance toward a design methodology for the flip-chip package. J Electron Packag 129:473–478CrossRef
22.
Zurück zum Zitat Nguyen L, Quentin C, Fine P, Cobb B, Bayyuk S, Yang H, Bidstrup-Allen SA (1999) Underfill of flip chip on laminates: simulation and validation. IEEE Trans Compon Packag Manuf Technol 22(2):168–176CrossRef Nguyen L, Quentin C, Fine P, Cobb B, Bayyuk S, Yang H, Bidstrup-Allen SA (1999) Underfill of flip chip on laminates: simulation and validation. IEEE Trans Compon Packag Manuf Technol 22(2):168–176CrossRef
Metadaten
Titel
A novel analytical filling time chart for design optimization of flip-chip underfill encapsulation process
verfasst von
Fei Chong Ng
M. Yusuf Tura Ali
Aizat Abas
C. Y. Khor
Z. Samsudin
M. Z. Abdullah
Publikationsdatum
13.11.2019
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 7-8/2019
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04573-6

Weitere Artikel der Ausgabe 7-8/2019

The International Journal of Advanced Manufacturing Technology 7-8/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.