Skip to main content
Erschienen in: Cognitive Computation 5/2022

26.07.2021

A Novel Approach for Tuning of Fluidic Resistance in Deterministic Lateral Displacement Array for Enhanced Separation of Circulating Tumor Cells

verfasst von: Rituraj Bhattacharjee, R. Kumar, Fadi Al-Turjman

Erschienen in: Cognitive Computation | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Deterministic lateral displacement (DLD) is evolving as an effective passive technique for seclusion of circulating tumor cells (CTCs) functioning based on nonuniform splitting of laminar flow moving through an array of micropillars. In this research work, an unconventional approach has been presented to alter the fluidic resistance between micropillars in asymmetric DLD array for better separation of CTCs in a blood sample. This paper is aimed at introducing an innovative approach using electrical network analogy for tuning of fluidic resistance resulting in enhanced seclusion of CTCs from WBCs implementing the concept of asymmetric DLD array. The paper also describes the computational analysis of a microfluidic device using tuned asymmetric DLD array technique. A cognitive clinical decision support system for identification of CTCs based on the model is also illustrated. In this paper, computational fluid dynamics approach has been used through simulation of the microfluidic device in COMSOL Multiphysics 5.4 software to effectively regulate the trajectory of differently sized CTCs and WBCs. A novel mathematical fluidic resistance tuning approach has been introduced to design the DLD array for effective segregation of different varieties of CTCs realized by computational visualization of trajectory working on Navier–Stokes equation. The proposed design of microfluidic device isolates three distinct CTCs, i.e., lung cancer CTCs, prostate cancer CTCs, and breast cancer CTCs of diameters 22.5 µm, 10.64 µm, and 13.1 µm, respectively, from tiny WBCs of diameter 12 µm with separation efficiencies above 90% at a high sample flow rate of 20 × 10−6 kg/s, thereby offering higher throughput. The tuning model of fluidic resistances between micropillars has been shown to offer minimal resistive effect to the required CTC trajectory while maintaining uniform pressure distribution around micropillars.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dong Y, Skelley AM, Merdek KD, Sprott KM, Jiang C, Pierceall WE, Lin J, Stocum M, Carney WP, Smirnov DA. Microfluidics and circulating tumor cells. J Mol Diagn. 2013;15(2):149–57.CrossRef Dong Y, Skelley AM, Merdek KD, Sprott KM, Jiang C, Pierceall WE, Lin J, Stocum M, Carney WP, Smirnov DA. Microfluidics and circulating tumor cells. J Mol Diagn. 2013;15(2):149–57.CrossRef
2.
Zurück zum Zitat Miller MC, Doyle GV, Terstappen LW. Significance of circulating tumor cells detected by the CellSearch system in patients with metastatic breast colorectal and prostate cancer. J Oncol 2010;617421. Miller MC, Doyle GV, Terstappen LW. Significance of circulating tumor cells detected by the CellSearch system in patients with metastatic breast colorectal and prostate cancer. J Oncol 2010;617421.
3.
Zurück zum Zitat Bouche O, Beretta GD, Alfonso PG, Geissler M. The role of anti-epidermal growth factor receptor monoclonal antibody monotherapy in the treatment of metastatic colorectal cancer. Cancer Treat Rev. 2010;36(Suppl 1):S1–10.CrossRef Bouche O, Beretta GD, Alfonso PG, Geissler M. The role of anti-epidermal growth factor receptor monoclonal antibody monotherapy in the treatment of metastatic colorectal cancer. Cancer Treat Rev. 2010;36(Suppl 1):S1–10.CrossRef
4.
Zurück zum Zitat den Toonder J. Circulating tumor cells: the Grand Challenge. Lab Chip. 2011;11:375–7.CrossRef den Toonder J. Circulating tumor cells: the Grand Challenge. Lab Chip. 2011;11:375–7.CrossRef
5.
Zurück zum Zitat Mahmud M, Kaiser MS, McGinnity TM, Hussain A. Deep learning in mining biological data. Cogn Comput. 2021;13(1):1–33.CrossRef Mahmud M, Kaiser MS, McGinnity TM, Hussain A. Deep learning in mining biological data. Cogn Comput. 2021;13(1):1–33.CrossRef
6.
Zurück zum Zitat Faundez-Zanuy M, Fierrez J, Ferrer MA, Diaz M, Tolosana R, Plamondon R. Handwriting biometrics: Applications and future trends in e-security and e-health. Cogn Comput. 2020;12(5):940–53.CrossRef Faundez-Zanuy M, Fierrez J, Ferrer MA, Diaz M, Tolosana R, Plamondon R. Handwriting biometrics: Applications and future trends in e-security and e-health. Cogn Comput. 2020;12(5):940–53.CrossRef
7.
Zurück zum Zitat Deebak BD, Al-Turjman F. Smart mutual authentication protocol for cloud based medical healthcare systems using Internet of medical things. IEEE Journal on Selected Areas in Communications. 2020. Deebak BD, Al-Turjman F. Smart mutual authentication protocol for cloud based medical healthcare systems using Internet of medical things. IEEE Journal on Selected Areas in Communications. 2020.
8.
Zurück zum Zitat Jin, et al. Technologies for label-free separation of circulating tumor cells: from historical foundations to recent developments. Lab Chip. 2014;14(1):32–44.CrossRef Jin, et al. Technologies for label-free separation of circulating tumor cells: from historical foundations to recent developments. Lab Chip. 2014;14(1):32–44.CrossRef
9.
Zurück zum Zitat Meng, et al. Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res. 2004;10(24):8152–62.CrossRef Meng, et al. Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res. 2004;10(24):8152–62.CrossRef
10.
Zurück zum Zitat Park S, et al. Morphological differences between circulating tumor cells from prostate cancer patients and cultured prostate cancer cells. PLoS One. 2014;9(1):e85264. Park S, et al. Morphological differences between circulating tumor cells from prostate cancer patients and cultured prostate cancer cells. PLoS One. 2014;9(1):e85264.
11.
Zurück zum Zitat Allard WJ, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004;10(20):6897–904.CrossRef Allard WJ, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004;10(20):6897–904.CrossRef
12.
Zurück zum Zitat Thiele J, Bethel K, Králíčková M, Kuhn P. Circulating tumor cells: fluid surrogates of solid tumors. Annu Rev Pathol. 2017;12:419–47.CrossRef Thiele J, Bethel K, Králíčková M, Kuhn P. Circulating tumor cells: fluid surrogates of solid tumors. Annu Rev Pathol. 2017;12:419–47.CrossRef
13.
Zurück zum Zitat Yang M, et al. Incorporating blood-based liquid biopsy information into cancer staging: time for a TNMB system? Ann Oncol. 2017;29(2):311–23.CrossRef Yang M, et al. Incorporating blood-based liquid biopsy information into cancer staging: time for a TNMB system? Ann Oncol. 2017;29(2):311–23.CrossRef
14.
Zurück zum Zitat Songjaroen T, Dungchai W, Chailapakul O, Henry CS, Laiwattanapaisal W. Blood separation on microfluidic paper-based analytical devices. Lab Chip. 2012;12:3392–8.CrossRef Songjaroen T, Dungchai W, Chailapakul O, Henry CS, Laiwattanapaisal W. Blood separation on microfluidic paper-based analytical devices. Lab Chip. 2012;12:3392–8.CrossRef
15.
Zurück zum Zitat Kim J-H, Woenker T, Adamec J, Regnier FE. Simple, miniaturized blood plasma extraction method. Anal Chem. 2013;85:11501–8.CrossRef Kim J-H, Woenker T, Adamec J, Regnier FE. Simple, miniaturized blood plasma extraction method. Anal Chem. 2013;85:11501–8.CrossRef
16.
Zurück zum Zitat Haeberle S, Brenner T, Zengerle R, Ducrée J. Centrifugal extraction of plasma from whole blood on a rotating disk. Lab Chip. 2006;6:776–81.CrossRef Haeberle S, Brenner T, Zengerle R, Ducrée J. Centrifugal extraction of plasma from whole blood on a rotating disk. Lab Chip. 2006;6:776–81.CrossRef
17.
Zurück zum Zitat Amasia M, Madou M. Large-volume centrifugal microfluidic device for blood plasma separation. Bioanalysis. 2010;2:1701–10.CrossRef Amasia M, Madou M. Large-volume centrifugal microfluidic device for blood plasma separation. Bioanalysis. 2010;2:1701–10.CrossRef
18.
Zurück zum Zitat Kersaudy-Kerhoas M, Sollier E. Micro-scale blood plasma separation: from acoustophoresis to egg-beaters. Lab Chip. 2013;13:3323–46.CrossRef Kersaudy-Kerhoas M, Sollier E. Micro-scale blood plasma separation: from acoustophoresis to egg-beaters. Lab Chip. 2013;13:3323–46.CrossRef
19.
Zurück zum Zitat Witek MA, Freed IM, Soper SA. Cell separations and sorting. Anal Chem. 2019;92(1):105–31.CrossRef Witek MA, Freed IM, Soper SA. Cell separations and sorting. Anal Chem. 2019;92(1):105–31.CrossRef
20.
Zurück zum Zitat Ishikawa T, Fujiwara H, Matsuki N, Yoshimoto T, Imai Y, Ueno H, Yamaguchi T. Asymmetry of blood flow and cancer cell adhesion in a microchannel with symmetric bifurcation and confluence. Biomed Microdevices. 2011;13:159–67.CrossRef Ishikawa T, Fujiwara H, Matsuki N, Yoshimoto T, Imai Y, Ueno H, Yamaguchi T. Asymmetry of blood flow and cancer cell adhesion in a microchannel with symmetric bifurcation and confluence. Biomed Microdevices. 2011;13:159–67.CrossRef
21.
Zurück zum Zitat Karimi A, Yazdi S, Ardekani AM. Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics. 2013;7:21501.CrossRef Karimi A, Yazdi S, Ardekani AM. Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics. 2013;7:21501.CrossRef
22.
Zurück zum Zitat Zhang J, Yan S, Yuan D, Alici G, Nguyen NT, Warkiani ME, Li W. Fundamentals and applications of inertial microfluidics: A review. Lab Chip. 2016;16:10–34.CrossRef Zhang J, Yan S, Yuan D, Alici G, Nguyen NT, Warkiani ME, Li W. Fundamentals and applications of inertial microfluidics: A review. Lab Chip. 2016;16:10–34.CrossRef
23.
Zurück zum Zitat Pødenphant M1, Ashley N, Koprowska K, Mir KU, Zalkovskij M, Bilenberg B, Bodmer W, Kristensen A, Marie R. Separation of cancer cells from white blood cells by pinched flow fractionation. Lab Chip. 2015;15(24):4598–4606. Pødenphant M1, Ashley N, Koprowska K, Mir KU, Zalkovskij M, Bilenberg B, Bodmer W, Kristensen A, Marie R. Separation of cancer cells from white blood cells by pinched flow fractionation. Lab Chip. 2015;15(24):4598–4606.
24.
Zurück zum Zitat Yoon Y, Lee J, Ra M, Gwon H, Lee S, Kim MY, Yoo K-C, Sul O, Kim CG, Kim W-Y, Park J-G, Lee S-J, Lee YY, Choi HS, Lee S-B. Continuous separation of circulating tumor cells from whole blood using a slanted weir microfluidic device. Cancers. 2019;11(2):200.CrossRef Yoon Y, Lee J, Ra M, Gwon H, Lee S, Kim MY, Yoo K-C, Sul O, Kim CG, Kim W-Y, Park J-G, Lee S-J, Lee YY, Choi HS, Lee S-B. Continuous separation of circulating tumor cells from whole blood using a slanted weir microfluidic device. Cancers. 2019;11(2):200.CrossRef
25.
Zurück zum Zitat Dharmasiri U, Njoroge SK, Witek MA, Adebiyi MG, Kamande JW, Hupert ML, Barany F, Soper SA. High-throughput selection, enumeration, electrokinetic manipulation, and molecular profiling of low-abundance circulating tumor cells using a microfluidic system. Anal Chem. 2011;83(6):2301–9.CrossRef Dharmasiri U, Njoroge SK, Witek MA, Adebiyi MG, Kamande JW, Hupert ML, Barany F, Soper SA. High-throughput selection, enumeration, electrokinetic manipulation, and molecular profiling of low-abundance circulating tumor cells using a microfluidic system. Anal Chem. 2011;83(6):2301–9.CrossRef
26.
Zurück zum Zitat Johnson ES, Anand RK, Chiu DT. Improved detection by ensemble-decision aliquot ranking of circulating tumor cells with low numbers of a targeted surface antigen. Anal Chem. 2015;87(18):9389–95.CrossRef Johnson ES, Anand RK, Chiu DT. Improved detection by ensemble-decision aliquot ranking of circulating tumor cells with low numbers of a targeted surface antigen. Anal Chem. 2015;87(18):9389–95.CrossRef
27.
Zurück zum Zitat Kumar V, Rezai P. Magneto-hydrodynamic fractionation (MHF) for continuous and sheathless sorting of high-concentration paramagnetic microparticles. Biomed Microdevices. 2017;19:39.CrossRef Kumar V, Rezai P. Magneto-hydrodynamic fractionation (MHF) for continuous and sheathless sorting of high-concentration paramagnetic microparticles. Biomed Microdevices. 2017;19:39.CrossRef
28.
Zurück zum Zitat Salafi T, Zhang Y, Zhang Y. A review on deterministic lateral displacement for particle separation and detection. Nano-Micro Lett. 2019;11:77.CrossRef Salafi T, Zhang Y, Zhang Y. A review on deterministic lateral displacement for particle separation and detection. Nano-Micro Lett. 2019;11:77.CrossRef
29.
Zurück zum Zitat Kottmeier J. Maike Wullen weber, Sebastian Blahout, Jeanette Hussong, Ingo Kampen, Arno Kwade and Andreas Dietzel, Accelerated particle separation in a DLD device at Re > 1 investigated by means of µPIV. Micromachines. 2019;10:768.CrossRef Kottmeier J. Maike Wullen weber, Sebastian Blahout, Jeanette Hussong, Ingo Kampen, Arno Kwade and Andreas Dietzel, Accelerated particle separation in a DLD device at Re > 1 investigated by means of µPIV. Micromachines. 2019;10:768.CrossRef
30.
Zurück zum Zitat Zeming K, Salafi T, Chen C, et al. Asymmetrical deterministic lateral displacement gaps for dual functions of enhanced separation and throughput of red blood cells. Sci Rep. 2016;6:22934.CrossRef Zeming K, Salafi T, Chen C, et al. Asymmetrical deterministic lateral displacement gaps for dual functions of enhanced separation and throughput of red blood cells. Sci Rep. 2016;6:22934.CrossRef
31.
Zurück zum Zitat Inglis D, Vernekar R, Krüger T, et al. The fluidic resistance of an array of obstacles and a method for improving boundaries in deterministic lateral displacement arrays. Microfluid Nanofluid. 2020;24(3):18. Inglis D, Vernekar R, Krüger T, et al. The fluidic resistance of an array of obstacles and a method for improving boundaries in deterministic lateral displacement arrays. Microfluid Nanofluid. 2020;24(3):18.
32.
Zurück zum Zitat Fachin F, Spuhler P, Martel-Foley JM, et al. Monolithic chip for high-throughput blood cell depletion to sort rare circulating tumor cells. Sci Rep. 2017;7:10936.CrossRef Fachin F, Spuhler P, Martel-Foley JM, et al. Monolithic chip for high-throughput blood cell depletion to sort rare circulating tumor cells. Sci Rep. 2017;7:10936.CrossRef
33.
Zurück zum Zitat Phillips KG, et al. Optical quantification of cellular mass, volume, and density of circulating tumor cells identified in an ovarian cancer patient. Front Oncol. 2012;2:72. Phillips KG, et al. Optical quantification of cellular mass, volume, and density of circulating tumor cells identified in an ovarian cancer patient. Front Oncol. 2012;2:72.
34.
Zurück zum Zitat Zhou J, Kulasinghe A, Bogseth A, et al. Isolation of circulating tumor cells in non-small-cell-lung-cancer patients using a multi-flow microfluidic channel. Microsyst Nanoeng. 2019;5(8). Zhou J, Kulasinghe A, Bogseth A, et al. Isolation of circulating tumor cells in non-small-cell-lung-cancer patients using a multi-flow microfluidic channel. Microsyst Nanoeng. 2019;5(8).
35.
Zurück zum Zitat Qin L, et al. Highly Efficient Isolation of Circulating Tumor Cells Using a Simple Wedge-Shaped Microfluidic Device. IEEE Trans Biomed Eng. 2019;66(6):1536–41.CrossRef Qin L, et al. Highly Efficient Isolation of Circulating Tumor Cells Using a Simple Wedge-Shaped Microfluidic Device. IEEE Trans Biomed Eng. 2019;66(6):1536–41.CrossRef
36.
Zurück zum Zitat Liu Z, Chen R, Li Y, Liu J, Wang P, Xia X, Qin L. Integrated microfluidic chip for efficient isolation and deformability analysis of circulating tumor cells. Adv Biosyst. 2018;2(10):1800200.CrossRef Liu Z, Chen R, Li Y, Liu J, Wang P, Xia X, Qin L. Integrated microfluidic chip for efficient isolation and deformability analysis of circulating tumor cells. Adv Biosyst. 2018;2(10):1800200.CrossRef
37.
Zurück zum Zitat González-Esparza D, Del Angel-Arroyo JA, Elvira-Hernández EA, Herrera-May AL, Aguilera-Cortés LA. Design and modeling of a microfluidic device with potential application for isolation of circulating tumor cells. IEEE International Conference on Engineering Veracruz (ICEV), Boca del Rio, Veracruz, Mexico. 2019;1–7. González-Esparza D, Del Angel-Arroyo JA, Elvira-Hernández EA, Herrera-May AL, Aguilera-Cortés LA. Design and modeling of a microfluidic device with potential application for isolation of circulating tumor cells. IEEE International Conference on Engineering Veracruz (ICEV), Boca del Rio, Veracruz, Mexico. 2019;1–7.
Metadaten
Titel
A Novel Approach for Tuning of Fluidic Resistance in Deterministic Lateral Displacement Array for Enhanced Separation of Circulating Tumor Cells
verfasst von
Rituraj Bhattacharjee
R. Kumar
Fadi Al-Turjman
Publikationsdatum
26.07.2021
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 5/2022
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-021-09904-y

Weitere Artikel der Ausgabe 5/2022

Cognitive Computation 5/2022 Zur Ausgabe

Premium Partner