Skip to main content
Erschienen in: Cognitive Computation 5/2022

10.08.2021

Quantum Machine Learning Architecture for COVID-19 Classification Based on Synthetic Data Generation Using Conditional Adversarial Neural Network

verfasst von: Javaria Amin, Muhammad Sharif, Nadia Gul, Seifedine Kadry, Chinmay Chakraborty

Erschienen in: Cognitive Computation | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Background

COVID-19 is a novel virus that affects the upper respiratory tract, as well as the lungs. The scale of the global COVID-19 pandemic, its spreading rate, and deaths are increasing regularly. Computed tomography (CT) scans can be used carefully to detect and analyze COVID-19 cases. In CT images/scans, ground-glass opacity (GGO) is found in the early stages of infection. While in later stages, there is a superimposed pulmonary consolidation.

Methods

This research investigates the quantum machine learning (QML) and classical machine learning (CML) approaches for the analysis of COVID-19 images. The recent developments in quantum computing have led researchers to explore new ideas and approaches using QML. The proposed approach consists of two phases: in phase I, synthetic CT images are generated through the conditional adversarial network (CGAN) to increase the size of the dataset for accurate training and testing. In phase II, the classification of COVID-19/healthy images is performed, in which two models are proposed: CML and QML.

Result

The proposed model achieved 0.94 precision (Pn), 0.94 accuracy (Ac), 0.94 recall (Rl), and 0.94 F1-score (Fe) on POF Hospital dataset while 0.96 Pn, 0.96 Ac, 0.95 Rl, and 0.96 Fe on UCSD-AI4H dataset.

Conclusion

The proposed method achieved better results when compared to the latest published work in this domain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Machhi J, Herskovitz J, Senan AM, Dutta D, Nath B, Oleynikov MD, et al. The natural history, pathobiology, and clinical manifestations of SARS-CoV-2 infections. J Neuroimmune Pharmacol. 2020;21:1–28. Machhi J, Herskovitz J, Senan AM, Dutta D, Nath B, Oleynikov MD, et al. The natural history, pathobiology, and clinical manifestations of SARS-CoV-2 infections. J Neuroimmune Pharmacol. 2020;21:1–28.
2.
Zurück zum Zitat MacLean OA, Lytras S, Weaver S, Singer JB, Boni MF, Lemey P, et al. Natural selection in the evolution of SARS-CoV-2 in bats, not humans, created a highly capable human pathogen. BioRxiv. 2020. MacLean OA, Lytras S, Weaver S, Singer JB, Boni MF, Lemey P, et al. Natural selection in the evolution of SARS-CoV-2 in bats, not humans, created a highly capable human pathogen. BioRxiv. 2020.
4.
Zurück zum Zitat Jin YH, Cai L, Cheng ZS, Cheng H, Deng T, Fan YP, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res. 2020;7:4. Jin YH, Cai L, Cheng ZS, Cheng H, Deng T, Fan YP, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res. 2020;7:4.
5.
Zurück zum Zitat Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;p. 102433. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;p. 102433.
6.
Zurück zum Zitat Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases, Radiology. 2020;p. 200642. Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases, Radiology. 2020;p. 200642.
7.
Zurück zum Zitat Wujtewicz M, Dylczyk-Sommer A, Aszkiełowicz A, Zdanowski S, Piwowarczyk S, Owczuk R. COVID-19–what should anaethesiologists and intensivists know about it? Anaesthesiology intensive therapy. 2020;52:34–41.CrossRef Wujtewicz M, Dylczyk-Sommer A, Aszkiełowicz A, Zdanowski S, Piwowarczyk S, Owczuk R. COVID-19–what should anaethesiologists and intensivists know about it? Anaesthesiology intensive therapy. 2020;52:34–41.CrossRef
8.
Zurück zum Zitat Romagnoli S, Peris A, De Gaudio AR, Geppetti P. SARS-CoV-2 and COVID-19: from the bench to the bedside. Physiol Rev. 2020;100:1455.CrossRef Romagnoli S, Peris A, De Gaudio AR, Geppetti P. SARS-CoV-2 and COVID-19: from the bench to the bedside. Physiol Rev. 2020;100:1455.CrossRef
9.
Zurück zum Zitat Shi F, Wang J, Shi J, Wu Z, Wang Q, Tang Z, et al. Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for covid-19, IEEE Rev Biomed Eng. 2020. Shi F, Wang J, Shi J, Wu Z, Wang Q, Tang Z, et al. Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for covid-19, IEEE Rev Biomed Eng. 2020.
10.
Zurück zum Zitat Yasmin M, Sharif M, Irum I, Mehmood W, Fernandes SL. Combining multiple color and shape features for image retrieval. IIOAB J. 2016;7:97–110. Yasmin M, Sharif M, Irum I, Mehmood W, Fernandes SL. Combining multiple color and shape features for image retrieval. IIOAB J. 2016;7:97–110.
11.
Zurück zum Zitat Nida N, Sharif M, Khan MUG, Yasmin M, Fernandes SL. A framework for automatic colorization of medical imaging. IIOAB J. 2016;7:202–9. Nida N, Sharif M, Khan MUG, Yasmin M, Fernandes SL. A framework for automatic colorization of medical imaging. IIOAB J. 2016;7:202–9.
12.
Zurück zum Zitat Amin J, Sharif M, Yasmin M, Ali H, Fernandes SL. A method for the detection and classification of diabetic retinopathy using structural predictors of bright lesions. Journal of Computational Science. 2017;19:153–64.CrossRef Amin J, Sharif M, Yasmin M, Ali H, Fernandes SL. A method for the detection and classification of diabetic retinopathy using structural predictors of bright lesions. Journal of Computational Science. 2017;19:153–64.CrossRef
13.
Zurück zum Zitat Shah JH, Chen Z, Sharif M, Yasmin M, Fernandes SL. A novel biomechanics-based approach for person re-identification by generating dense color sift salience features. Journal of Mechanics in Medicine and Biology. 2017;17:1740011.CrossRef Shah JH, Chen Z, Sharif M, Yasmin M, Fernandes SL. A novel biomechanics-based approach for person re-identification by generating dense color sift salience features. Journal of Mechanics in Medicine and Biology. 2017;17:1740011.CrossRef
14.
Zurück zum Zitat Fatima Bokhari ST, Sharif M, Yasmin M, Fernandes SL. Fundus image segmentation and feature extraction for the detection of glaucoma: a new approach. Current Medical Imaging. 2018;vol. 14, pp. 77–87. Fatima Bokhari ST, Sharif M, Yasmin M, Fernandes SL. Fundus image segmentation and feature extraction for the detection of glaucoma: a new approach. Current Medical Imaging. 2018;vol. 14, pp. 77–87.
15.
Zurück zum Zitat Naqi S, Sharif M, Yasmin M, Fernandes SL. Lung nodule detection using polygon approximation and hybrid features from CT images. Current Medical Imaging. 2018;14:108–17.CrossRef Naqi S, Sharif M, Yasmin M, Fernandes SL. Lung nodule detection using polygon approximation and hybrid features from CT images. Current Medical Imaging. 2018;14:108–17.CrossRef
16.
Zurück zum Zitat Amin J, Sharif M, Yasmin M, Fernandes SL. Big data analysis for brain tumor detection: Deep convolutional neural networks. Futur Gener Comput Syst. 2018;87:290–7.CrossRef Amin J, Sharif M, Yasmin M, Fernandes SL. Big data analysis for brain tumor detection: Deep convolutional neural networks. Futur Gener Comput Syst. 2018;87:290–7.CrossRef
17.
Zurück zum Zitat Amin J, Sharif M, Yasmin M, Fernandes SL. A distinctive approach in brain tumor detection and classification using MRI. Pattern Recogn Lett. 2017. Amin J, Sharif M, Yasmin M, Fernandes SL. A distinctive approach in brain tumor detection and classification using MRI. Pattern Recogn Lett. 2017.
18.
Zurück zum Zitat Amin J, Sharif M, Yasmin M, Saba T, Anjum MA, Fernandes SL. A new approach for brain tumor segmentation and classification based on score level fusion using transfer learning. J Med Syst. 2019;43:1–16.CrossRef Amin J, Sharif M, Yasmin M, Saba T, Anjum MA, Fernandes SL. A new approach for brain tumor segmentation and classification based on score level fusion using transfer learning. J Med Syst. 2019;43:1–16.CrossRef
19.
Zurück zum Zitat Muhammad N, Sharif M, Amin J, Mehboob R, Gilani SA, Bibi N, et al. Neurochemical alterations in sudden unexplained perinatal deaths—a review. Front Pediatr. 2018;6:6.CrossRef Muhammad N, Sharif M, Amin J, Mehboob R, Gilani SA, Bibi N, et al. Neurochemical alterations in sudden unexplained perinatal deaths—a review. Front Pediatr. 2018;6:6.CrossRef
20.
Zurück zum Zitat Amin J, Sharif M, Yasmin M, Saba T, Raza M. Use of machine intelligence to conduct analysis of human brain data for detection of abnormalities in its cognitive functions. Multimed Tools Appl. 2020;79:10955–73.CrossRef Amin J, Sharif M, Yasmin M, Saba T, Raza M. Use of machine intelligence to conduct analysis of human brain data for detection of abnormalities in its cognitive functions. Multimed Tools Appl. 2020;79:10955–73.CrossRef
21.
Zurück zum Zitat Sharif M, Amin J, Siddiqa A, Khan HU, Malik MSA, Anjum MA, et al. Recognition of different types of leukocytes using YOLOv2 and optimized bag-of-features. IEEE Access. 2020;8:167448–59.CrossRef Sharif M, Amin J, Siddiqa A, Khan HU, Malik MSA, Anjum MA, et al. Recognition of different types of leukocytes using YOLOv2 and optimized bag-of-features. IEEE Access. 2020;8:167448–59.CrossRef
22.
Zurück zum Zitat Amin J, Sharif M, Anjum MA, Khan HU, Malik MSA, Kadry S. An integrated design for classification and localization of diabetic foot ulcer based on CNN and YOLOv2-DFU models. IEEE Access. 2020. Amin J, Sharif M, Anjum MA, Khan HU, Malik MSA, Kadry S. An integrated design for classification and localization of diabetic foot ulcer based on CNN and YOLOv2-DFU models. IEEE Access. 2020.
23.
Zurück zum Zitat Ieracitano C, Mammone N, Hussain A, Morabito FC. A novel explainable machine learning approach for EEG-based brain-computer interface systems. Neural Comput Applic. 2021;pp. 1–14. Ieracitano C, Mammone N, Hussain A, Morabito FC. A novel explainable machine learning approach for EEG-based brain-computer interface systems. Neural Comput Applic. 2021;pp. 1–14.
24.
Zurück zum Zitat Wang S, Kang B, Ma J, Zeng X, Xiao M, Guo J, et al. A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19). MedRxiv. 2020. Wang S, Kang B, Ma J, Zeng X, Xiao M, Guo J, et al. A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19). MedRxiv. 2020.
25.
Zurück zum Zitat Yadav SS, Jadhav SM. Deep convolutional neural network based medical image classification for disease diagnosis. J Big Data. 2019;6:113.CrossRef Yadav SS, Jadhav SM. Deep convolutional neural network based medical image classification for disease diagnosis. J Big Data. 2019;6:113.CrossRef
26.
Zurück zum Zitat Nguyen G, Dlugolinsky S, Bobák M, Tran V, García ÁL, Heredia I, et al. Machine Learning and Deep Learning frameworks and libraries for large-scale data mining: a survey. Artif Intell Rev. 2019;52:77–124.CrossRef Nguyen G, Dlugolinsky S, Bobák M, Tran V, García ÁL, Heredia I, et al. Machine Learning and Deep Learning frameworks and libraries for large-scale data mining: a survey. Artif Intell Rev. 2019;52:77–124.CrossRef
27.
Zurück zum Zitat Bandyopadhyay S, DUTTA S. Detection of fraud transactions using recurrent neural network during COVID-19. 2020. Bandyopadhyay S, DUTTA S. Detection of fraud transactions using recurrent neural network during COVID-19. 2020.
28.
Zurück zum Zitat Jiang Y, Chen H, Loew M, Ko H. COVID-19 CT image synthesis with a conditional generative adversarial network. arXiv preprint arXiv:2007.14638. 2020. Jiang Y, Chen H, Loew M, Ko H. COVID-19 CT image synthesis with a conditional generative adversarial network. arXiv preprint arXiv:2007.14638. 2020.
29.
Zurück zum Zitat Abbas A, Abdelsamea MM, Gaber M. 4S-DT: self supervised super sample decomposition for transfer learning with application to COVID-19 detection, arXivpreprint arXiv:2007.11450. 2020. Abbas A, Abdelsamea MM, Gaber M. 4S-DT: self supervised super sample decomposition for transfer learning with application to COVID-19 detection, arXivpreprint arXiv:2007.11450. 2020.
30.
Zurück zum Zitat Cheng Y, Zhao X, Huang K, Tan T. Semi-supervised learning and feature evaluation for RGB-D object recognition. Comput Vis Image Underst. 2015;139:149–60.CrossRef Cheng Y, Zhao X, Huang K, Tan T. Semi-supervised learning and feature evaluation for RGB-D object recognition. Comput Vis Image Underst. 2015;139:149–60.CrossRef
31.
Zurück zum Zitat Xin B, Peng W. Prediction for chaotic time series-based AE-CNN and transfer learning. Complexity. vol. 2020, 2020. Xin B, Peng W. Prediction for chaotic time series-based AE-CNN and transfer learning. Complexity. vol. 2020, 2020.
32.
Zurück zum Zitat Sahiner B, Pezeshk A, Hadjiiski LM, Wang X, Drukker K, Cha KH, et al. Deep learning in medical imaging and radiation therapy. Med Phys. 2019;46:e1–36.CrossRef Sahiner B, Pezeshk A, Hadjiiski LM, Wang X, Drukker K, Cha KH, et al. Deep learning in medical imaging and radiation therapy. Med Phys. 2019;46:e1–36.CrossRef
33.
Zurück zum Zitat Rajinikanth V, Dey N, Raj ANJ, Hassanien AE, Santosh K, Raja N. Harmony-search and otsu based system for coronavirus disease (COVID-19) detection using lung CT scan images. arXiv preprint arXiv:2004.03431. 2020. Rajinikanth V, Dey N, Raj ANJ, Hassanien AE, Santosh K, Raja N. Harmony-search and otsu based system for coronavirus disease (COVID-19) detection using lung CT scan images. arXiv preprint arXiv:2004.03431. 2020.
34.
Zurück zum Zitat Mishra BK, Keshri AK, Rao YS, Mishra BK, Mahato B, Ayesha S, et al. COVID-19 created chaos across the globe: three novel quarantine epidemic models. Chaos, Solitons & Fractals. 2020;p. 109928. Mishra BK, Keshri AK, Rao YS, Mishra BK, Mahato B, Ayesha S, et al. COVID-19 created chaos across the globe: three novel quarantine epidemic models. Chaos, Solitons & Fractals. 2020;p. 109928.
35.
Zurück zum Zitat Yang GZ, Nelson BJ, Murphy RR, Choset H, Christensen H, Collins SH, et al. Combating COVID-19—the role of robotics in managing public health and infectious diseases. ed: Sci Robot. 2020. Yang GZ, Nelson BJ, Murphy RR, Choset H, Christensen H, Collins SH, et al. Combating COVID-19—the role of robotics in managing public health and infectious diseases. ed: Sci Robot. 2020.
36.
Zurück zum Zitat Nguyen TT. Artificial intelligence in the battle against coronavirus (COVID-19): a survey and future research directions. Preprint, DOI, 2020;vol. 10. Nguyen TT. Artificial intelligence in the battle against coronavirus (COVID-19): a survey and future research directions. Preprint, DOI, 2020;vol. 10.
37.
Zurück zum Zitat Yu K-H, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nature biomedical engineering. 2018;2:719–31.CrossRef Yu K-H, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nature biomedical engineering. 2018;2:719–31.CrossRef
38.
Zurück zum Zitat Vishnuvarthanan A, Rajasekaran MP, Govindaraj V, Zhang Y, Thiyagarajan A. An automated hybrid approach using clustering and nature inspired optimization technique for improved tumor and tissue segmentation in magnetic resonance brain images. Appl Soft Comput. 2017;57:399–426.CrossRef Vishnuvarthanan A, Rajasekaran MP, Govindaraj V, Zhang Y, Thiyagarajan A. An automated hybrid approach using clustering and nature inspired optimization technique for improved tumor and tissue segmentation in magnetic resonance brain images. Appl Soft Comput. 2017;57:399–426.CrossRef
39.
Zurück zum Zitat Toğaçar M, Ergen B, Cömert Z. COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches. Comput Biol Med. 2020;p. 103805. Toğaçar M, Ergen B, Cömert Z. COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches. Comput Biol Med. 2020;p. 103805.
40.
Zurück zum Zitat Nour M, Cömert Z, Polat K. A novel medical diagnosis model for COVID-19 infection detection based on deep features and Bayesian optimization. Appl Soft Comput. 2020;p. 106580. Nour M, Cömert Z, Polat K. A novel medical diagnosis model for COVID-19 infection detection based on deep features and Bayesian optimization. Appl Soft Comput. 2020;p. 106580.
41.
Zurück zum Zitat Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Acharya UR. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput Biol Med. 2020;p. 103792. Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Acharya UR. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput Biol Med. 2020;p. 103792.
42.
Zurück zum Zitat Dunjko V, Briegel HJ. Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep Prog Phys. 2018;vol. 81, p. 074001. Dunjko V, Briegel HJ. Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep Prog Phys. 2018;vol. 81, p. 074001.
43.
Zurück zum Zitat Ciliberto C, Herbster M, Ialongo AD, Pontil M, Rocchetto A, Severini S, et al. Quantum machine learning: a classical perspective. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2018;474:20170551.MathSciNetCrossRef Ciliberto C, Herbster M, Ialongo AD, Pontil M, Rocchetto A, Severini S, et al. Quantum machine learning: a classical perspective. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2018;474:20170551.MathSciNetCrossRef
44.
Zurück zum Zitat Schuld M. Quantum machine learning for supervised pattern recognition. 2017. Schuld M. Quantum machine learning for supervised pattern recognition. 2017.
45.
Zurück zum Zitat Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S. Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging. 2016;35:1207–16.CrossRef Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S. Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging. 2016;35:1207–16.CrossRef
46.
Zurück zum Zitat Kassal I, Whitfield JD, Perdomo-Ortiz A, Yung M-H, Aspuru-Guzik A. Simulating chemistry using quantum computers. Annu Rev Phys Chem. 2011;62:185–207.CrossRef Kassal I, Whitfield JD, Perdomo-Ortiz A, Yung M-H, Aspuru-Guzik A. Simulating chemistry using quantum computers. Annu Rev Phys Chem. 2011;62:185–207.CrossRef
47.
Zurück zum Zitat Dunjko V, Taylor JM, Briegel HJ. Quantum-enhanced machine learning. Phys Rev Lett. 2016;vol. 117, p. 130501. Dunjko V, Taylor JM, Briegel HJ. Quantum-enhanced machine learning. Phys Rev Lett. 2016;vol. 117, p. 130501.
48.
Zurück zum Zitat Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434. 2015. Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434. 2015.
49.
Zurück zum Zitat Henderson M, Shakya S, Pradhan S, Cook T. Quanvolutional neural networks: powering image recognition with quantum circuits. Quantum Machine Intelligence. 2020;2:1–9.CrossRef Henderson M, Shakya S, Pradhan S, Cook T. Quanvolutional neural networks: powering image recognition with quantum circuits. Quantum Machine Intelligence. 2020;2:1–9.CrossRef
50.
Zurück zum Zitat Bergholm V, Izaac J, Schuld M, Gogolin C, Alam MS, Ahmed S, et al. Pennylane: automatic differentiation of hybrid quantum-classical computations. arXiv preprint arXiv:1811.04968. 2018. Bergholm V, Izaac J, Schuld M, Gogolin C, Alam MS, Ahmed S, et al. Pennylane: automatic differentiation of hybrid quantum-classical computations. arXiv preprint arXiv:1811.04968. 2018.
51.
52.
Zurück zum Zitat Zhao J, Zhang Y, He X, Xie P. Covid-ct-dataset: a ct scan dataset about covid-19. 2020. Zhao J, Zhang Y, He X, Xie P. Covid-ct-dataset: a ct scan dataset about covid-19. 2020.
53.
Zurück zum Zitat Yang X, He X, Zhao J, Zhang Y, Zhang S, Xie P. COVID-CT-dataset: a CT scan dataset about COVID-19. ArXiv e-prints, p. arXiv: 2003.13865. 2020. Yang X, He X, Zhao J, Zhang Y, Zhang S, Xie P. COVID-CT-dataset: a CT scan dataset about COVID-19. ArXiv e-prints, p. arXiv: 2003.13865. 2020.
54.
Zurück zum Zitat Horry MJ, Chakraborty S, Paul M, Ulhaq A, Pradhan B, Saha M, et al. COVID-19 detection through transfer learning using multimodal imaging data. IEEE Access. 2020;8:149808–24.CrossRef Horry MJ, Chakraborty S, Paul M, Ulhaq A, Pradhan B, Saha M, et al. COVID-19 detection through transfer learning using multimodal imaging data. IEEE Access. 2020;8:149808–24.CrossRef
55.
Zurück zum Zitat Burgos-Artizzu XP. Computer-aided covid-19 patient screening using chest images (X-Ray and CT scans). medRxiv. 2020. Burgos-Artizzu XP. Computer-aided covid-19 patient screening using chest images (X-Ray and CT scans). medRxiv. 2020.
56.
Zurück zum Zitat Wang Z, Liu Q, Dou Q. Contrastive cross-site learning with redesigned net for COVID-19 CT classification. IEEE J Biomed Health Inform. 2020;24:2806–13.CrossRef Wang Z, Liu Q, Dou Q. Contrastive cross-site learning with redesigned net for COVID-19 CT classification. IEEE J Biomed Health Inform. 2020;24:2806–13.CrossRef
57.
Zurück zum Zitat Ewen N, Khan N. Targeted self supervision for classification on a small COVID-19 CT scan dataset. arXiv preprint arXiv:2011.10188. 2020. Ewen N, Khan N. Targeted self supervision for classification on a small COVID-19 CT scan dataset. arXiv preprint arXiv:2011.10188. 2020.
Metadaten
Titel
Quantum Machine Learning Architecture for COVID-19 Classification Based on Synthetic Data Generation Using Conditional Adversarial Neural Network
verfasst von
Javaria Amin
Muhammad Sharif
Nadia Gul
Seifedine Kadry
Chinmay Chakraborty
Publikationsdatum
10.08.2021
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 5/2022
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-021-09926-6

Weitere Artikel der Ausgabe 5/2022

Cognitive Computation 5/2022 Zur Ausgabe

Premium Partner