Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 4/2023

01.05.2023 | Original Research Article

A Novel Control Technique for Longitudinal Off-Corner Depressions on Wide Faces of Continuous Casting Slabs: Effect of the Mold Design on Controlling LOCDs

verfasst von: Zhenyu Niu, Fengshan Du, Jiyin Jiang, Hui Yu

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Associated with uneven heat transfer in molds, longitudinal off-corner depressions (LOCDs) have been identified as a general defect on wide–thick slabs during continuous casting. Additionally, the concurrent surface and subsurface cracks accompanying LOCDs consistently undermine the quality of high-end steel production. To control LOCDs and crack defects, a multibody and multifield coupling model is developed, upon which a convex-structure mold (CSM) is designed and optimized. In this work, the model is extended to cover the mold, secondary cooling zones, and reduction segments. Thus, the shell deformation can be described during the full process of continuous casting. Based on the model, the CSM is thoroughly compared with a traditional flat-plate mold (FPM) in terms of contact status, air gap expansion, interfacial heat transfer, shell growth, shell deformation, and LOCD formation. The results show that shell shrinkage in the FPM causes a larger contact gap at the corners. Consequently, thick slag layers and air gaps forming around shell corners lead to a hot (thin) spot at the wide face off-corner. With the corner gaps being closed in the CSM, the shell growth at the off-corner is homogenized, and the local hot spot disappears. In secondary cooling zones, the solidifying shell cast by the FPM undergoes larger deformation due to the thin spot. However, uniform shell growth in the CSM could avoid concentrated stress and increase the resistance to deformation. Therefore, the width and depth of the LOCD are greatly reduced throughout the continuous casting process. At the end of mechanical reduction, the depths of the LOCDs in the FPM and CSM cases are 1.77 and 1.1 mm, which correspond to heavy and slight defect levels, respectively. Through these numerical comparisons, the advantages of CSMs in controlling LOCDs are finally confirmed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat P. Presoly, R. Pierer, and C. Bernhard: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5377–88.CrossRef P. Presoly, R. Pierer, and C. Bernhard: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5377–88.CrossRef
3.
Zurück zum Zitat J.K. Brimacombe, F. Weinberg, and E.B. Hawbolt: Metall. Trans. B, 1979, vol. 10, pp. 279–92.CrossRef J.K. Brimacombe, F. Weinberg, and E.B. Hawbolt: Metall. Trans. B, 1979, vol. 10, pp. 279–92.CrossRef
4.
Zurück zum Zitat M.L.S. Zappulla and B.G. Thomas: Mater. Sci. Forum, 2018, vol. 941, pp. 112–17.CrossRef M.L.S. Zappulla and B.G. Thomas: Mater. Sci. Forum, 2018, vol. 941, pp. 112–17.CrossRef
5.
Zurück zum Zitat E. Wang and J. He: Sci. Technol. Adv. Mater., 2001, vol. 2, pp. 257–63.CrossRef E. Wang and J. He: Sci. Technol. Adv. Mater., 2001, vol. 2, pp. 257–63.CrossRef
6.
Zurück zum Zitat W.R. Storkman, and B.G. Thomas:Modeling of Casting and Welding Processes, Palm Coast, FL, 1988, Minerals, Metals & Materials Society, Warrendale, PA, 1988, pp. 287–97. W.R. Storkman, and B.G. Thomas:Modeling of Casting and Welding Processes, Palm Coast, FL, 1988, Minerals, Metals & Materials Society, Warrendale, PA, 1988, pp. 287–97.
8.
Zurück zum Zitat B. Thomas and X. Huang: Metall. Trans. B, 1994, vol. 25B, pp. 527–47.CrossRef B. Thomas and X. Huang: Metall. Trans. B, 1994, vol. 25B, pp. 527–47.CrossRef
9.
Zurück zum Zitat X. Huang and B.G. Thomas: Can. Metall. Q., 1998, vol. 37, pp. 197–212.CrossRef X. Huang and B.G. Thomas: Can. Metall. Q., 1998, vol. 37, pp. 197–212.CrossRef
10.
Zurück zum Zitat L. Xu, E. Wang, C. Karcher, A. Deng, and X. Xu: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 2779–93.CrossRef L. Xu, E. Wang, C. Karcher, A. Deng, and X. Xu: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 2779–93.CrossRef
11.
12.
Zurück zum Zitat W.H. Lee and K.W. Yi: Met. Mater. Int., 2021, vol. 27, pp. 4168–81.CrossRef W.H. Lee and K.W. Yi: Met. Mater. Int., 2021, vol. 27, pp. 4168–81.CrossRef
13.
Zurück zum Zitat R.B. Mahapatra, J.K. Brimacombe, and I.V. Samarasekera: Metall. Mater. Trans. B, 1991, vol. 22B, pp. 875–78.CrossRef R.B. Mahapatra, J.K. Brimacombe, and I.V. Samarasekera: Metall. Mater. Trans. B, 1991, vol. 22B, pp. 875–78.CrossRef
14.
Zurück zum Zitat S. Pelak, R. Misicko, D. Fedáková, and J. Bidulská: Mater. Eng., 2009, vol. 16, pp. 21–28. S. Pelak, R. Misicko, D. Fedáková, and J. Bidulská: Mater. Eng., 2009, vol. 16, pp. 21–28.
15.
Zurück zum Zitat M.L.S. Zappulla, and B.G. Thomas:TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings, San Diego, CA, USA, 2017, Springer Cham, 2017, pp. 501–10. M.L.S. Zappulla, and B.G. Thomas:TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings, San Diego, CA, USA, 2017, Springer Cham, 2017, pp. 501–10.
16.
Zurück zum Zitat M.L.S. Zappulla: Mechanisms of Longitudinal Depression Formation in Steel Continuous Casting, Ph.D. Thesis, Colorado School of Mines, Ann Arbor, MI, 2020. M.L.S. Zappulla: Mechanisms of Longitudinal Depression Formation in Steel Continuous Casting, Ph.D. Thesis, Colorado School of Mines, Ann Arbor, MI, 2020.
17.
Zurück zum Zitat Y. Yashima: Tetsu-to-Hagane, 1984, vol. 70, p. S901. Y. Yashima: Tetsu-to-Hagane, 1984, vol. 70, p. S901.
18.
Zurück zum Zitat B.G. Thomas, W.R. Storkman, and A. Moitra:Proc. 6th Int. Iron and Steel Congress, Nagoya, Japan, 1990, Iron and Steel Institute of Japan, Tokyo, 1990, pp. 348–55. B.G. Thomas, W.R. Storkman, and A. Moitra:Proc. 6th Int. Iron and Steel Congress, Nagoya, Japan, 1990, Iron and Steel Institute of Japan, Tokyo, 1990, pp. 348–55.
19.
Zurück zum Zitat N. Yamasaki, S. Shima, K. Tsunenari, S. Hayashi, M. Doki, Y. Kato, D. Miki, and T. Nakanishi: Nippon Steel & Sumitomo Metal Technical Report, 2016, vol. 112, pp. 64–70. N. Yamasaki, S. Shima, K. Tsunenari, S. Hayashi, M. Doki, Y. Kato, D. Miki, and T. Nakanishi: Nippon Steel & Sumitomo Metal Technical Report, 2016, vol. 112, pp. 64–70.
20.
Zurück zum Zitat S.V. Filatov, A.I. Dagman, V.N. Karavaev, V.P. Glebov, G.N. Kononykhin, A.B. Kotel’nikov, and A.A. Vopneruk: Metallurgist, 2018, vol. 62, pp. 58-61. S.V. Filatov, A.I. Dagman, V.N. Karavaev, V.P. Glebov, G.N. Kononykhin, A.B. Kotel’nikov, and A.A. Vopneruk: Metallurgist, 2018, vol. 62, pp. 58-61.
21.
22.
Zurück zum Zitat J. Kim, S. Kim, D. Kim, Y. Lee, J. Eum, and E. Lee: Steelmaking Conference Proceedings, 1995, pp. 333–39. J. Kim, S. Kim, D. Kim, Y. Lee, J. Eum, and E. Lee: Steelmaking Conference Proceedings, 1995, pp. 333–39.
23.
Zurück zum Zitat C.B. Shi, M.D. Seo, J.W. Cho, and S.H. Kim: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1081–97.CrossRef C.B. Shi, M.D. Seo, J.W. Cho, and S.H. Kim: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1081–97.CrossRef
24.
Zurück zum Zitat C. Ji, Y. Cui, Z. Zeng, Z. Tian, C. Zhao, and G.-S. Zhu: J. Iron Steel Res. Int., 2015, vol. 22, pp. 53–56.CrossRef C. Ji, Y. Cui, Z. Zeng, Z. Tian, C. Zhao, and G.-S. Zhu: J. Iron Steel Res. Int., 2015, vol. 22, pp. 53–56.CrossRef
25.
Zurück zum Zitat H. Cui, K. Zhang, Z. Wang, B. Chen, B. Liu, J. Qing, and Z. Li: Metals, 2019, vol. 9(2), p. 204. H. Cui, K. Zhang, Z. Wang, B. Chen, B. Liu, J. Qing, and Z. Li: Metals, 2019, vol. 9(2), p. 204.
26.
Zurück zum Zitat W. Qian, L. Yongjian, H. Yuming, H. Bing, X. Yincheng, and Z. Jianguo: China Metall., 2012, vol. 22, pp. 22–27. W. Qian, L. Yongjian, H. Yuming, H. Bing, X. Yincheng, and Z. Jianguo: China Metall., 2012, vol. 22, pp. 22–27.
27.
Zurück zum Zitat B.G. Thomas, A. Moitra, and R. McDavid: ISS Trans., 1996, vol. 23, pp. 57–70. B.G. Thomas, A. Moitra, and R. McDavid: ISS Trans., 1996, vol. 23, pp. 57–70.
28.
Zurück zum Zitat Z. Zhenyi, Z. Yongliang, and W. Kezhong: 2019 National Conference on Application of High Efficiency Continuous Casting Technology and Quality Control of Casting Billets, Yangzhou, 2019, Hebei Metals Society, pp. 241-44. Z. Zhenyi, Z. Yongliang, and W. Kezhong: 2019 National Conference on Application of High Efficiency Continuous Casting Technology and Quality Control of Casting Billets, Yangzhou, 2019, Hebei Metals Society, pp. 241-44.
29.
Zurück zum Zitat Y. Lu, Q. Wang, Y. Li, and S. He: Contin. Cast., 2011, vol. 2011, pp. 33–37. Y. Lu, Q. Wang, Y. Li, and S. He: Contin. Cast., 2011, vol. 2011, pp. 33–37.
30.
Zurück zum Zitat Z. Niu, F. Du, J. Jiang, and H. Yu: Unpublished Research, Yanshan University, Qinhuangdao, Hebei, 2022. Z. Niu, F. Du, J. Jiang, and H. Yu: Unpublished Research, Yanshan University, Qinhuangdao, Hebei, 2022.
31.
Zurück zum Zitat Z. Niu, Z. Cai, and M. Zhu: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 1556–73.CrossRef Z. Niu, Z. Cai, and M. Zhu: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 1556–73.CrossRef
32.
Zurück zum Zitat Z. Niu, Z. Cai, and M. Zhu: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2737–52.CrossRef Z. Niu, Z. Cai, and M. Zhu: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2737–52.CrossRef
33.
34.
Zurück zum Zitat Z. Niu, Z. Cai, and M. Zhu: Ironmak. Steelmak., 2020, vol. 47, pp. 1135–47.CrossRef Z. Niu, Z. Cai, and M. Zhu: Ironmak. Steelmak., 2020, vol. 47, pp. 1135–47.CrossRef
35.
Zurück zum Zitat Z. Liu, B. Li, A. Vakhrushev, M. Wu, and A. Ludwig: Steel Res. Int., 2019, vol. 90, p. 1800117.CrossRef Z. Liu, B. Li, A. Vakhrushev, M. Wu, and A. Ludwig: Steel Res. Int., 2019, vol. 90, p. 1800117.CrossRef
36.
Zurück zum Zitat C. Wu, C. Ji, and M. Zhu: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1346–59.CrossRef C. Wu, C. Ji, and M. Zhu: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1346–59.CrossRef
37.
Zurück zum Zitat S. Yu, M. Long, H. Chen, D. Chen, T. Liu, H. Duan, and J. Cao: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 866–76.CrossRef S. Yu, M. Long, H. Chen, D. Chen, T. Liu, H. Duan, and J. Cao: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 866–76.CrossRef
38.
Zurück zum Zitat Y. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 685–705.CrossRef Y. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 685–705.CrossRef
39.
Zurück zum Zitat Q. Qin, S. Shang, D. Wu, and Y. Zang: Adv. Mech. Eng., 2014, vol. 6, 942719.CrossRef Q. Qin, S. Shang, D. Wu, and Y. Zang: Adv. Mech. Eng., 2014, vol. 6, 942719.CrossRef
40.
41.
Zurück zum Zitat Z. Niu, Z. Cai, and M. Zhu: Ironmak. Steelmak., 2019, vol. 47, pp. 1–3. Z. Niu, Z. Cai, and M. Zhu: Ironmak. Steelmak., 2019, vol. 47, pp. 1–3.
42.
Zurück zum Zitat M.L.S. Zappulla, G. Zhu, and B.G. Thomas: AISTech 2019—Proceedings of the Iron & Steel Technology Conference, 2019, pp. 6–9. M.L.S. Zappulla, G. Zhu, and B.G. Thomas: AISTech 2019—Proceedings of the Iron & Steel Technology Conference, 2019, pp. 6–9.
43.
Zurück zum Zitat M.S.C. Marc: Theory and User Information, MSC Software Corporation, Newport Beach, 2016. M.S.C. Marc: Theory and User Information, MSC Software Corporation, Newport Beach, 2016.
44.
Zurück zum Zitat ANSYS: Fluent Theory Guide, ANSYS Inc., Canonsburg, PA, 2015. ANSYS: Fluent Theory Guide, ANSYS Inc., Canonsburg, PA, 2015.
45.
Zurück zum Zitat MpCCI: Documentation, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany, 2015. MpCCI: Documentation, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany, 2015.
46.
Zurück zum Zitat A. Yamanaka, K. Nakajima, and K. Okamura: Ironmak. Steelmak., 1995, vol. 22, pp. 508–12. A. Yamanaka, K. Nakajima, and K. Okamura: Ironmak. Steelmak., 1995, vol. 22, pp. 508–12.
47.
Zurück zum Zitat Y.M. Won, T.J. Yeo, D.J. Seol, and K.H. Oh: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 779–94.CrossRef Y.M. Won, T.J. Yeo, D.J. Seol, and K.H. Oh: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 779–94.CrossRef
Metadaten
Titel
A Novel Control Technique for Longitudinal Off-Corner Depressions on Wide Faces of Continuous Casting Slabs: Effect of the Mold Design on Controlling LOCDs
verfasst von
Zhenyu Niu
Fengshan Du
Jiyin Jiang
Hui Yu
Publikationsdatum
01.05.2023
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 4/2023
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-023-02803-7

Weitere Artikel der Ausgabe 4/2023

Metallurgical and Materials Transactions B 4/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.