Skip to main content
Erschienen in: Rare Metals 1/2023

01.10.2022 | Original Article

A novel electrolytic-manganese-residues-and-serpentine-based composite (S-EMR) for enhanced Cd(II) and Pb(II) adsorption in aquatic environment

verfasst von: Meng-Yu Ma, Xuan Ke, Yan-Chang Liu, Zhi-Hao Ha, Ting Wang, Jia Li, Fan Zhang, Tian C. Zhang

Erschienen in: Rare Metals | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electrolytic manganese residue (EMR) is the waste slag generated from the electrolysis manganese industry. As a promising exploitable adsorbent, EMR has become a hot research topic. However, EMR’s low adsorption capacity has limited its applications as an efficient adsorbent. In this study, the EMR was mixed with serpentine and calcined (at 800 °C for 2 h) to prepare a composite adsorbent (S-EMR) with its specific surface area of 11.998 m2·g−1 (increased compared to the original EMR) and improved adsorption capacities for Cd2+ (98.05 mg·g−1) and Pb2+ (565.81 mg·g−1). Kinetic studies have shown that the pseudo-first-order kinetics (PSO) model could best describe the adsorption kinetics of S-EMR for Cd2+/Pb2+, implying that the chemisorption process is the rate-limiting step. The effects of different interfering ions on S-EMR’s adsorption for Cd2+/Pb2+ may be due to the difference in their electronegativity. Results of response surface methodology tests showed that pH had the highest influence on adsorption, and the removal efficiency of S-EMR reached 99.92% for Cd(II) and 94.00% for Pb(II). X-ray photoelectron spectroscopy (XPS) analyses revealed that chemical precipitation was the predominant mechanism for Cd2+/Pb2+ removal, and the adsorption mechanisms were associated with ion exchange and electrostatic attraction. The results showed that S-EMR could be used as an effective adsorbent for the removal of Cd(II)/Pb(II) from water bodies, rendering dual benefits of pollution control and resource recovery.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Li J, Du DY, Peng QJ, Wu CJ, Lv KL, Ye HP, Chen SH, Zhan W. Activation of silicon in the electrolytic manganese residue by mechanical grinding-roasting. J Clean Prod. 2018;192:347.CrossRef Li J, Du DY, Peng QJ, Wu CJ, Lv KL, Ye HP, Chen SH, Zhan W. Activation of silicon in the electrolytic manganese residue by mechanical grinding-roasting. J Clean Prod. 2018;192:347.CrossRef
[2]
Zurück zum Zitat Zhang Y, Liu X, Xu Y, Tang B, Wang Y. Preparation of road base material by utilizing electrolytic manganese residue based on Si-Al structure: mechanical properties and Mn2+ stabilization/solidification characterization. J Hazard Mater. 2020;390:122188.CrossRef Zhang Y, Liu X, Xu Y, Tang B, Wang Y. Preparation of road base material by utilizing electrolytic manganese residue based on Si-Al structure: mechanical properties and Mn2+ stabilization/solidification characterization. J Hazard Mater. 2020;390:122188.CrossRef
[3]
Zurück zum Zitat Zhou C, Du B, Wang N, Chen Z. Preparation and strength property of autoclaved bricks from electrolytic manganese residue. J Clean Prod. 2014;84:701.CrossRef Zhou C, Du B, Wang N, Chen Z. Preparation and strength property of autoclaved bricks from electrolytic manganese residue. J Clean Prod. 2014;84:701.CrossRef
[4]
Zurück zum Zitat Wang J, Peng B, Chai L, Zhang Q, Liu Q. Preparation of electrolytic manganese residue–ground granulated blastfurnace slag cement. Powder Technol. 2013;241:12.CrossRef Wang J, Peng B, Chai L, Zhang Q, Liu Q. Preparation of electrolytic manganese residue–ground granulated blastfurnace slag cement. Powder Technol. 2013;241:12.CrossRef
[5]
Zurück zum Zitat Xin B, Chen B, Duan N, Zhou C. Extraction of manganese from electrolytic manganese residue by bioleaching. Biores Technol. 2011;102(2):1683.CrossRef Xin B, Chen B, Duan N, Zhou C. Extraction of manganese from electrolytic manganese residue by bioleaching. Biores Technol. 2011;102(2):1683.CrossRef
[6]
Zurück zum Zitat Lan J, Sun Y, Chen X, Zhan W, Du Y, Zhang TC, Ye H, Du D, Hou H. Bio-leaching of manganese from electrolytic manganese slag by microbacterium trichothecenolyticum Y1: mechanism and characteristics of microbial metabolites. Biores Technol. 2021;319:124056.CrossRef Lan J, Sun Y, Chen X, Zhan W, Du Y, Zhang TC, Ye H, Du D, Hou H. Bio-leaching of manganese from electrolytic manganese slag by microbacterium trichothecenolyticum Y1: mechanism and characteristics of microbial metabolites. Biores Technol. 2021;319:124056.CrossRef
[7]
Zurück zum Zitat Shu J, Liu R, Wu H, Liu Z, Sun X, Tao C. Adsorption of methylene blue on modified electrolytic manganese residue: kinetics, isotherm, thermodynamics and mechanism analysis. J Taiwan Inst Chem Eng. 2018;82:351.CrossRef Shu J, Liu R, Wu H, Liu Z, Sun X, Tao C. Adsorption of methylene blue on modified electrolytic manganese residue: kinetics, isotherm, thermodynamics and mechanism analysis. J Taiwan Inst Chem Eng. 2018;82:351.CrossRef
[8]
Zurück zum Zitat Lan JR, Sun Y, Guo L, Du YG, Du DY, Zhang TC, Li J, Ye HP. Highly efficient removal of As(V) with modified electrolytic manganese residues (M-EMRs) as a novel adsorbent. J Alloy Compd. 2019;811:151973.CrossRef Lan JR, Sun Y, Guo L, Du YG, Du DY, Zhang TC, Li J, Ye HP. Highly efficient removal of As(V) with modified electrolytic manganese residues (M-EMRs) as a novel adsorbent. J Alloy Compd. 2019;811:151973.CrossRef
[9]
Zurück zum Zitat Li C, Zhong H, Wang S, Xue J, Zhang Z. Removal of basic dye (methylene blue) from aqueous solution using zeolite synthesized from electrolytic manganese residue. J Ind Eng Chem. 2015;23:344.CrossRef Li C, Zhong H, Wang S, Xue J, Zhang Z. Removal of basic dye (methylene blue) from aqueous solution using zeolite synthesized from electrolytic manganese residue. J Ind Eng Chem. 2015;23:344.CrossRef
[10]
Zurück zum Zitat Ma M, Du Y, Bao S, Li J, Wei H, Lv Y, Song X, Zhang T, Du D. Removal of cadmium and lead from aqueous solutions by thermal activated electrolytic manganese residues. Sci Total Environ. 2020;748:141490.CrossRef Ma M, Du Y, Bao S, Li J, Wei H, Lv Y, Song X, Zhang T, Du D. Removal of cadmium and lead from aqueous solutions by thermal activated electrolytic manganese residues. Sci Total Environ. 2020;748:141490.CrossRef
[11]
Zurück zum Zitat Lan J, Sun Y, Huang P, Du Y, Zhan W, Zhang TC, Du D. Using electrolytic manganese residue to prepare novel nanocomposite catalysts for efficient degradation of Azo Dyes in Fenton-like processes. Chemosphere. 2020;252:126487.CrossRef Lan J, Sun Y, Huang P, Du Y, Zhan W, Zhang TC, Du D. Using electrolytic manganese residue to prepare novel nanocomposite catalysts for efficient degradation of Azo Dyes in Fenton-like processes. Chemosphere. 2020;252:126487.CrossRef
[12]
Zurück zum Zitat Sun Z, Zheng L, Zheng S, Frost RL. Preparation and characterization of TiO2/acid leached serpentinite tailings composites and their photocatalytic reduction of Chromium(VI). J Colloid Interface Sci. 2013;404:102.CrossRef Sun Z, Zheng L, Zheng S, Frost RL. Preparation and characterization of TiO2/acid leached serpentinite tailings composites and their photocatalytic reduction of Chromium(VI). J Colloid Interface Sci. 2013;404:102.CrossRef
[13]
Zurück zum Zitat Li Z, Huang P, Hu H, Zhang Q, Chen M. Efficient separation of Zn(II) from Cd(II) in sulfate solution by mechanochemically activated serpentine. Chemosphere. 2020;258:127275.CrossRef Li Z, Huang P, Hu H, Zhang Q, Chen M. Efficient separation of Zn(II) from Cd(II) in sulfate solution by mechanochemically activated serpentine. Chemosphere. 2020;258:127275.CrossRef
[14]
Zurück zum Zitat Cao CY, Liang CH, Yin Y, Du LY. Thermal activation of serpentine for adsorption of cadmium. J Hazard Mater. 2017;329:222.CrossRef Cao CY, Liang CH, Yin Y, Du LY. Thermal activation of serpentine for adsorption of cadmium. J Hazard Mater. 2017;329:222.CrossRef
[15]
Zurück zum Zitat Qin Q, Wang Q, Fu D, Ma J. An efficient approach for Pb(II) and Cd(II) removal using manganese dioxide formed in situ. Chem Eng J. 2011;172(1):68.CrossRef Qin Q, Wang Q, Fu D, Ma J. An efficient approach for Pb(II) and Cd(II) removal using manganese dioxide formed in situ. Chem Eng J. 2011;172(1):68.CrossRef
[16]
Zurück zum Zitat Yang T, Wang Y, Sheng L, He C, Sun W, He Q. Enhancing Cd(II) sorption by red mud with heat treatment: performance and mechanisms of sorption. J Environ Manag. 2020;255:109866.CrossRef Yang T, Wang Y, Sheng L, He C, Sun W, He Q. Enhancing Cd(II) sorption by red mud with heat treatment: performance and mechanisms of sorption. J Environ Manag. 2020;255:109866.CrossRef
[17]
Zurück zum Zitat Zhao DL, Chen SH, Yang SB, Yang X, Yang ST. Investigation of the sorption behavior of Cd(II) on GMZ bentonite as affected by solution chemistry. Chem Eng J. 2011;166(3):1010.CrossRef Zhao DL, Chen SH, Yang SB, Yang X, Yang ST. Investigation of the sorption behavior of Cd(II) on GMZ bentonite as affected by solution chemistry. Chem Eng J. 2011;166(3):1010.CrossRef
[18]
Zurück zum Zitat Zhang L, Tang S, He F, Liu Y, Mao W, Guan Y. Highly efficient and selective capture of heavy metals by poly(acrylic acid) grafted chitosan and biochar composite for wastewater treatment. Chem Eng J. 2019;378:122215.CrossRef Zhang L, Tang S, He F, Liu Y, Mao W, Guan Y. Highly efficient and selective capture of heavy metals by poly(acrylic acid) grafted chitosan and biochar composite for wastewater treatment. Chem Eng J. 2019;378:122215.CrossRef
[19]
Zurück zum Zitat Feng HF, Yu YX, Jiang SQ, Shang J, Cheng Y, Wang L, Hao WC, Wang TM. Synthesis of magnetic core–shell iron nanochains for potential applications in Cr(VI) ion pollution treatment. Rare Met. 2021;40(1):1.CrossRef Feng HF, Yu YX, Jiang SQ, Shang J, Cheng Y, Wang L, Hao WC, Wang TM. Synthesis of magnetic core–shell iron nanochains for potential applications in Cr(VI) ion pollution treatment. Rare Met. 2021;40(1):1.CrossRef
[20]
Zurück zum Zitat Hu QL, Wang LS, Yu NN, Zhang ZF, Zheng X, Hu XM. Preparation of Fe3O4@C@TiO2 and its application for oxytetracycline hydrochloride adsorption. Rare Met. 2020;39(11):1333.CrossRef Hu QL, Wang LS, Yu NN, Zhang ZF, Zheng X, Hu XM. Preparation of Fe3O4@C@TiO2 and its application for oxytetracycline hydrochloride adsorption. Rare Met. 2020;39(11):1333.CrossRef
[21]
Zurück zum Zitat Chen G, Shah KJ, Shi L, Chiang PC. Removal of Cd(II) and Pb(II) ions from aqueous solutions by synthetic mineral adsorbent: performance and mechanisms. Appl Surf Sci. 2017;409:296.CrossRef Chen G, Shah KJ, Shi L, Chiang PC. Removal of Cd(II) and Pb(II) ions from aqueous solutions by synthetic mineral adsorbent: performance and mechanisms. Appl Surf Sci. 2017;409:296.CrossRef
[22]
Zurück zum Zitat Aljerf L. High-efficiency extraction of bromocresol purple dye and heavy metals as chromium from industrial effluent by adsorption onto a modified surface of zeolite: kinetics and equilibrium study. J Environ Manage. 2018;225:120.CrossRef Aljerf L. High-efficiency extraction of bromocresol purple dye and heavy metals as chromium from industrial effluent by adsorption onto a modified surface of zeolite: kinetics and equilibrium study. J Environ Manage. 2018;225:120.CrossRef
[23]
Zurück zum Zitat Weber W, Morris JC. Kinetics of adsorption on carbon from solution. J Sanit Eng Div. 1963;1:1. Weber W, Morris JC. Kinetics of adsorption on carbon from solution. J Sanit Eng Div. 1963;1:1.
[25]
Zurück zum Zitat Tan P, Sun J, Hu Y, Fang Z, Bi Q, Chen Y, Cheng J. Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes. J Hazard Mater. 2015;297:251.CrossRef Tan P, Sun J, Hu Y, Fang Z, Bi Q, Chen Y, Cheng J. Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes. J Hazard Mater. 2015;297:251.CrossRef
[26]
Zurück zum Zitat Ghorbani F, Kamari S. Application of response surface methodology for optimization of methyl orange adsorption by Fe-grafting sugar beet bagasse. Adsorpt Sci Technol. 2016;35(3–4):317. Ghorbani F, Kamari S. Application of response surface methodology for optimization of methyl orange adsorption by Fe-grafting sugar beet bagasse. Adsorpt Sci Technol. 2016;35(3–4):317.
[27]
Zurück zum Zitat Kamari S, Ghorbani F. Synthesis of magMCM-41 with rice husk silica as cadmium sorbent from aqueous solutions: parameters’ optimization by response surface methodology. Environ Technol. 2016;38(12):1562.CrossRef Kamari S, Ghorbani F. Synthesis of magMCM-41 with rice husk silica as cadmium sorbent from aqueous solutions: parameters’ optimization by response surface methodology. Environ Technol. 2016;38(12):1562.CrossRef
[28]
Zurück zum Zitat Li J, Sun P, Li J, Lv Y, Ye H, Shao L, Du D. Synthesis of electrolytic manganese residue-fly ash based geopolymers with high compressive strength. Constr Build Mater. 2020;248:118489.CrossRef Li J, Sun P, Li J, Lv Y, Ye H, Shao L, Du D. Synthesis of electrolytic manganese residue-fly ash based geopolymers with high compressive strength. Constr Build Mater. 2020;248:118489.CrossRef
[29]
Zurück zum Zitat Sirviö JA, Visanko M. Lignin-rich sulfated wood nanofibers as high-performing adsorbents for the removal of lead and copper from water. J Hazard Mater. 2020;383:121174.1.CrossRef Sirviö JA, Visanko M. Lignin-rich sulfated wood nanofibers as high-performing adsorbents for the removal of lead and copper from water. J Hazard Mater. 2020;383:121174.1.CrossRef
[30]
Zurück zum Zitat Yang H, Lu M, Chen D, Chen R, Li L, Han W. Efficient and rapid removal of Pb2+ from water by magnetic Fe3O4@MnO2 core-shell nanoflower attached to carbon microtube: adsorption behavior and process study. J Colloid Interface Sci. 2020;563:218.CrossRef Yang H, Lu M, Chen D, Chen R, Li L, Han W. Efficient and rapid removal of Pb2+ from water by magnetic Fe3O4@MnO2 core-shell nanoflower attached to carbon microtube: adsorption behavior and process study. J Colloid Interface Sci. 2020;563:218.CrossRef
[31]
Zurück zum Zitat Zhao J, Liu J, Li N, Wang W, Nan J, Zhao Z, Cui F. Highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous Fe3O4-MnO2: adsorption behavior and process study. Chem Eng J. 2016;304:304737.CrossRef Zhao J, Liu J, Li N, Wang W, Nan J, Zhao Z, Cui F. Highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous Fe3O4-MnO2: adsorption behavior and process study. Chem Eng J. 2016;304:304737.CrossRef
[32]
Zurück zum Zitat Zhou Y, Liu X, Xiang Y, Wang P, Zhang J, Zhang F, Wei J, Luo L, Lei M, Tang L. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling. Biores Technol. 2017;245:266.CrossRef Zhou Y, Liu X, Xiang Y, Wang P, Zhang J, Zhang F, Wei J, Luo L, Lei M, Tang L. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling. Biores Technol. 2017;245:266.CrossRef
[33]
Zurück zum Zitat Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34(5):451.CrossRef Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34(5):451.CrossRef
[34]
Zurück zum Zitat Miretzky P, Muñoz C. Enhanced metal removal from aqueous solution by Fenton activated macrophyte biomass. Desalination. 2011;271(1):20.CrossRef Miretzky P, Muñoz C. Enhanced metal removal from aqueous solution by Fenton activated macrophyte biomass. Desalination. 2011;271(1):20.CrossRef
[35]
Zurück zum Zitat Albadarin AB, Mangwandi C, Al-Muhtaseb AAH, Walker GM, Allen SJ, Ahmad MNM. Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent. Chem Eng J. 2012;179:193.CrossRef Albadarin AB, Mangwandi C, Al-Muhtaseb AAH, Walker GM, Allen SJ, Ahmad MNM. Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent. Chem Eng J. 2012;179:193.CrossRef
[36]
Zurück zum Zitat Gan M, Sun S, Zheng Z, Tang H, Sheng J, Zhu J, Liu X. Adsorption of Cr(VI) and Cu(II) by AlPO4 modified biosynthetic Schwertmannite. Appl Surf Sci. 2015;356:986.CrossRef Gan M, Sun S, Zheng Z, Tang H, Sheng J, Zhu J, Liu X. Adsorption of Cr(VI) and Cu(II) by AlPO4 modified biosynthetic Schwertmannite. Appl Surf Sci. 2015;356:986.CrossRef
[37]
Zurück zum Zitat Smiljanić S, Smičiklas I, Perić-Grujić A, Šljivić M, Đukić B, Lončar B. Study of factors affecting Ni2+ immobilization efficiency by temperature activated red mud. Chem Eng J. 2011;168(2):610.CrossRef Smiljanić S, Smičiklas I, Perić-Grujić A, Šljivić M, Đukić B, Lončar B. Study of factors affecting Ni2+ immobilization efficiency by temperature activated red mud. Chem Eng J. 2011;168(2):610.CrossRef
[38]
Zurück zum Zitat Zheng SA, Zheng X, Chen C. Leaching behavior of heavy metals and transformation of their speciation in polluted soil receiving simulated acid rain. PLoS ONE. 2012;7(11):e49664.CrossRef Zheng SA, Zheng X, Chen C. Leaching behavior of heavy metals and transformation of their speciation in polluted soil receiving simulated acid rain. PLoS ONE. 2012;7(11):e49664.CrossRef
[39]
Zurück zum Zitat Zhou G, Luo J, Liu C, Chu L, Crittenden J. Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents. Water Res. 2018;131:246.CrossRef Zhou G, Luo J, Liu C, Chu L, Crittenden J. Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents. Water Res. 2018;131:246.CrossRef
[40]
Zurück zum Zitat Hadi P, Barford J, McKay G. Toxic heavy metal capture using a novel electronic waste-based material - mechanism, modeling and comparison. Environ Sci Technol. 2013;47(15):8248. Hadi P, Barford J, McKay G. Toxic heavy metal capture using a novel electronic waste-based material - mechanism, modeling and comparison. Environ Sci Technol. 2013;47(15):8248.
[41]
Zurück zum Zitat Yang GX, Jiang H. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Res. 2014;48:396.CrossRef Yang GX, Jiang H. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Res. 2014;48:396.CrossRef
[42]
Zurück zum Zitat Zhang F, Wang X, Yin D, Peng B, Tan C, Liu Y, Tan X, Wu S. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes). J Environ Manag. 2015;153:68.CrossRef Zhang F, Wang X, Yin D, Peng B, Tan C, Liu Y, Tan X, Wu S. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes). J Environ Manag. 2015;153:68.CrossRef
[43]
Zurück zum Zitat Wang T, Liu W, Xiong L, Xu N, Ni J. Influence of pH, ionic strength and humic acid on competitive adsorption of Pb(II), Cd(II) and Cr(III) onto titanate nanotubes. Chem Eng J. 2013;215:366.CrossRef Wang T, Liu W, Xiong L, Xu N, Ni J. Influence of pH, ionic strength and humic acid on competitive adsorption of Pb(II), Cd(II) and Cr(III) onto titanate nanotubes. Chem Eng J. 2013;215:366.CrossRef
[44]
Zurück zum Zitat Peng ZD, Lin XM, Zhang YL, Hu Z, Yang XJ, Chen CY, Chen HY, Li YT, Wang JJ. Removal of cadmium from wastewater by magnetic zeolite synthesized from natural, low-grade molybdenum. Sci Total Environ. 2021;772(1):145355.CrossRef Peng ZD, Lin XM, Zhang YL, Hu Z, Yang XJ, Chen CY, Chen HY, Li YT, Wang JJ. Removal of cadmium from wastewater by magnetic zeolite synthesized from natural, low-grade molybdenum. Sci Total Environ. 2021;772(1):145355.CrossRef
[45]
Zurück zum Zitat Sahu MK, Mandal S, Yadav LS, Dash SS, Patel RK. Equilibrium and kinetic studies of Cd(II) ion adsorption from aqueous solution by activated red mud. Desalin Water Treat. 2016;57(30):14251.CrossRef Sahu MK, Mandal S, Yadav LS, Dash SS, Patel RK. Equilibrium and kinetic studies of Cd(II) ion adsorption from aqueous solution by activated red mud. Desalin Water Treat. 2016;57(30):14251.CrossRef
[46]
Zurück zum Zitat Yu S, Zhai L, Wang Y, Liu X, Xu L, Cheng L. Synthesis of magnetic chrysotile nanotubes for adsorption of Pb(II), Cd(II) and Cr(III) ions from aqueous solution. J Environ Chem Eng. 2015;3(2):752.CrossRef Yu S, Zhai L, Wang Y, Liu X, Xu L, Cheng L. Synthesis of magnetic chrysotile nanotubes for adsorption of Pb(II), Cd(II) and Cr(III) ions from aqueous solution. J Environ Chem Eng. 2015;3(2):752.CrossRef
Metadaten
Titel
A novel electrolytic-manganese-residues-and-serpentine-based composite (S-EMR) for enhanced Cd(II) and Pb(II) adsorption in aquatic environment
verfasst von
Meng-Yu Ma
Xuan Ke
Yan-Chang Liu
Zhi-Hao Ha
Ting Wang
Jia Li
Fan Zhang
Tian C. Zhang
Publikationsdatum
01.10.2022
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 1/2023
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-022-02042-w

Weitere Artikel der Ausgabe 1/2023

Rare Metals 1/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.