Skip to main content
Erschienen in: Rare Metals 1/2023

17.05.2017

Phase selection and solidification path transition of Ti–48Al–xNb alloys with different cooling rates

verfasst von: Tan He, Rui Hu, Jie-Ren Yang, Heng-Zhi Fu

Erschienen in: Rare Metals | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ti–48Al–xNb alloys were solidified by containerless electromagnetic levitation with quenching system of the conical copper mold. The influence of cooling rates on phase selection of Ti–48Al–xNb alloys was investigated. In near-equilibrium solidification condition, the dendrite β phase is observed as the leading phase. No other metastable phase (e.g., α phase) is observed. In contrast, in rapid solidification condition, the metastable α phase is observed in as-quenched Ti–48Al–2Nb alloy. Furthermore, the metastable α phase is replaced by the primary β phase with Nb addition increasing. For Ti–48Al–(x = 4, 6, 8)Nb alloys, increasing cooling rate results in a solidification path transition. The peritectic reaction (L + β → α) is therefore significantly suppressed. The relationships between primary dendrite arm spacing (λ 1) and cooling rate (τ) can be described.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Lin YZ, Fu GS, Cao R, Chen JH, Hu DW. Compression damage and fracture behaviors of γ-TiAl based alloys. Rare Met. 2014;38(2):334. Lin YZ, Fu GS, Cao R, Chen JH, Hu DW. Compression damage and fracture behaviors of γ-TiAl based alloys. Rare Met. 2014;38(2):334.
[2]
Zurück zum Zitat Clemens H, Mayer S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv Eng Mater. 2013;15(4):191.CrossRef Clemens H, Mayer S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv Eng Mater. 2013;15(4):191.CrossRef
[3]
Zurück zum Zitat Liu Y, Hu R, Kou HC, Wang J, Zhang TB, Li JS, Zhang J. Solidification characteristics of high Nb-containing γ-TiAl-based alloys with different aluminum contents. Rare Met. 2015;34(6):381.CrossRef Liu Y, Hu R, Kou HC, Wang J, Zhang TB, Li JS, Zhang J. Solidification characteristics of high Nb-containing γ-TiAl-based alloys with different aluminum contents. Rare Met. 2015;34(6):381.CrossRef
[4]
Zurück zum Zitat Liang YF, Xu XJ, Lin JP. Advances in phase relationship for high Nb-containing TiAl alloys. Rare Met. 2016;35(1):15.CrossRef Liang YF, Xu XJ, Lin JP. Advances in phase relationship for high Nb-containing TiAl alloys. Rare Met. 2016;35(1):15.CrossRef
[5]
Zurück zum Zitat Han JC, Xiao SL, Tian J, Chen YY, Xu LJ, Wang XP, Jia Y, Cao SZ. Microstructure characterization and tensile properties of a Ni-containing TiAl-based alloy with heat treatment. Rare Met. 2016;35(1):26.CrossRef Han JC, Xiao SL, Tian J, Chen YY, Xu LJ, Wang XP, Jia Y, Cao SZ. Microstructure characterization and tensile properties of a Ni-containing TiAl-based alloy with heat treatment. Rare Met. 2016;35(1):26.CrossRef
[6]
Zurück zum Zitat Leonard KJ, Vasudevan VK. Phase equilibria and solid state transformations in Nb-rich Nb–Ti–Al intermetallic alloys. Intermetallics. 2000;8(9):1257.CrossRef Leonard KJ, Vasudevan VK. Phase equilibria and solid state transformations in Nb-rich Nb–Ti–Al intermetallic alloys. Intermetallics. 2000;8(9):1257.CrossRef
[7]
Zurück zum Zitat Kim YW. Ordered intermetallic alloys, part III: gamma titanium aluminides. JOM. 1994;46(7):30.CrossRef Kim YW. Ordered intermetallic alloys, part III: gamma titanium aluminides. JOM. 1994;46(7):30.CrossRef
[8]
Zurück zum Zitat Imayev V, Khismatullin T, Oleneva T, Imayev R, Valiev R, Wunderlich R. Grain refinement in cast Ti–46Al–8Nb and Ti–46Al–8Ta alloys via massive transformation. Adv Eng Mater. 2008;10(12):1095.CrossRef Imayev V, Khismatullin T, Oleneva T, Imayev R, Valiev R, Wunderlich R. Grain refinement in cast Ti–46Al–8Nb and Ti–46Al–8Ta alloys via massive transformation. Adv Eng Mater. 2008;10(12):1095.CrossRef
[9]
Zurück zum Zitat Prasad U, Xu Q, Chaturvedi MC. Effect of cooling rate and manganese concentration on phase transformation in Ti–45 at% Al based alloys. Mater Sci Eng A. 2002;329–331:906.CrossRef Prasad U, Xu Q, Chaturvedi MC. Effect of cooling rate and manganese concentration on phase transformation in Ti–45 at% Al based alloys. Mater Sci Eng A. 2002;329–331:906.CrossRef
[10]
Zurück zum Zitat Prasad U, Chaturvedi MC. Influence of alloying elements on the kinetics of massive transformation in gamma titanium aluminides. Metall Mater Trans A. 2003;34(10):2053.CrossRef Prasad U, Chaturvedi MC. Influence of alloying elements on the kinetics of massive transformation in gamma titanium aluminides. Metall Mater Trans A. 2003;34(10):2053.CrossRef
[11]
Zurück zum Zitat Dey SR, Hazotte A, Bouzy E. Crystallography and phase transformation mechanisms in TiAl-based alloys—a synthesis. Intermetallics. 2009;17(12):1052.CrossRef Dey SR, Hazotte A, Bouzy E. Crystallography and phase transformation mechanisms in TiAl-based alloys—a synthesis. Intermetallics. 2009;17(12):1052.CrossRef
[12]
Zurück zum Zitat Shuleshova O, Woodcock T, Lindenkreuz H, Hermann R, Loser W, Buchner B. Metastable phase formation in Ti–Al–Nb undercooled melts. Acta Mater. 2007;55(2):681.CrossRef Shuleshova O, Woodcock T, Lindenkreuz H, Hermann R, Loser W, Buchner B. Metastable phase formation in Ti–Al–Nb undercooled melts. Acta Mater. 2007;55(2):681.CrossRef
[13]
Zurück zum Zitat Hu XW, Li SM, Chen WJ, Gao SF, Liu L, Fu HZ. Primary dendrite arm spacing during unidirectional solidification of Pb–Bi peritectic alloys. J Alloys Compd. 2009;484(1):631.CrossRef Hu XW, Li SM, Chen WJ, Gao SF, Liu L, Fu HZ. Primary dendrite arm spacing during unidirectional solidification of Pb–Bi peritectic alloys. J Alloys Compd. 2009;484(1):631.CrossRef
[14]
Zurück zum Zitat Gadırlı E, Kaya H, Gündüz M. Directional solidification and characterization of the Cd–Sn eutectic alloy. J Alloys Compd. 2007;431(1):171.CrossRef Gadırlı E, Kaya H, Gündüz M. Directional solidification and characterization of the Cd–Sn eutectic alloy. J Alloys Compd. 2007;431(1):171.CrossRef
[15]
Zurück zum Zitat Lapin J, Gabalcová Z. Solidification behaviour of TiAl-based alloys studied by directional solidification technique. Intermetallics. 2011;19(6):797.CrossRef Lapin J, Gabalcová Z. Solidification behaviour of TiAl-based alloys studied by directional solidification technique. Intermetallics. 2011;19(6):797.CrossRef
[16]
Zurück zum Zitat Fan JL, Li XZ, Su YQ, Guo JJ, Fu HZ. Effect of growth rate on microstructure parameters and microhardness in directionally solidified Ti–49Al alloy. Mater Des. 2012;34:552.CrossRef Fan JL, Li XZ, Su YQ, Guo JJ, Fu HZ. Effect of growth rate on microstructure parameters and microhardness in directionally solidified Ti–49Al alloy. Mater Des. 2012;34:552.CrossRef
[17]
Zurück zum Zitat Lapin J, Gabalcova Z, Pelachova T. Effect of Y2O3 crucible on contamination of directionally solidified intermetallic Ti–46Al–8Nb alloy. Intermetallics. 2011;19(3):396.CrossRef Lapin J, Gabalcova Z, Pelachova T. Effect of Y2O3 crucible on contamination of directionally solidified intermetallic Ti–46Al–8Nb alloy. Intermetallics. 2011;19(3):396.CrossRef
[18]
Zurück zum Zitat Fu PX, Kang XH, Ma YC, Liu K, Li DZ, Li YY. Centrifugal casting of TiAl exhaust valves. Intermetallics. 2008;16(2):130.CrossRef Fu PX, Kang XH, Ma YC, Liu K, Li DZ, Li YY. Centrifugal casting of TiAl exhaust valves. Intermetallics. 2008;16(2):130.CrossRef
[19]
Zurück zum Zitat Chai LH. Microstructral evolution of rapidly solidified TiAl based alloys. Harbin: Harbin Institute of Technology; 2010. 67. Chai LH. Microstructral evolution of rapidly solidified TiAl based alloys. Harbin: Harbin Institute of Technology; 2010. 67.
[20]
Zurück zum Zitat Bisen KB, Arenas M, El-Kaddah N, Acoff VL. Computation and validation of weld pool dimensions and temperature profiles for gamma TiAl. Metall Mater Trans A. 2003;34(10):2273.CrossRef Bisen KB, Arenas M, El-Kaddah N, Acoff VL. Computation and validation of weld pool dimensions and temperature profiles for gamma TiAl. Metall Mater Trans A. 2003;34(10):2273.CrossRef
[21]
Zurück zum Zitat Johnson DR, Inui H, Muto S, Omiya Y, Yamanaka T. Microstructural development during directional solidification of α-seeded TiAl alloys. Acta Mater. 2006;54(4):1077.CrossRef Johnson DR, Inui H, Muto S, Omiya Y, Yamanaka T. Microstructural development during directional solidification of α-seeded TiAl alloys. Acta Mater. 2006;54(4):1077.CrossRef
[22]
Zurück zum Zitat Schwaighofer E, Rashkova B, Clemens H, Stark A, Mayer S. Effect of carbon addition on solidification behavior, phase evolution and creep properties of an intermetallic β-stabilized γ-TiAl based alloy. Intermetallics. 2014;46:173.CrossRef Schwaighofer E, Rashkova B, Clemens H, Stark A, Mayer S. Effect of carbon addition on solidification behavior, phase evolution and creep properties of an intermetallic β-stabilized γ-TiAl based alloy. Intermetallics. 2014;46:173.CrossRef
[23]
Zurück zum Zitat Daloz D, Hecht U, Zollinger J, Combeau H, Hazotte A, Založnik M. Microsegregation, macrosegregation and related phase transformations in TiAl alloys. Intermetallics. 2011;19(6):749.CrossRef Daloz D, Hecht U, Zollinger J, Combeau H, Hazotte A, Založnik M. Microsegregation, macrosegregation and related phase transformations in TiAl alloys. Intermetallics. 2011;19(6):749.CrossRef
[24]
Zurück zum Zitat Hunt JD. Cellular and Primary Dendrite Spacings. Solidification and Casting of Metals. London: Metals Society; 1979. 1923. Hunt JD. Cellular and Primary Dendrite Spacings. Solidification and Casting of Metals. London: Metals Society; 1979. 1923.
[25]
Zurück zum Zitat Kurz W, Fisher DJ. Dendrite growth at the limit of stability: tip radius and spacing. Acta Metall. 1981;29(1):11.CrossRef Kurz W, Fisher DJ. Dendrite growth at the limit of stability: tip radius and spacing. Acta Metall. 1981;29(1):11.CrossRef
[26]
Zurück zum Zitat Chen GL, Xu XJ, Teng ZK, Wang YL, Lin JP. Microsegregation in high Nb containing TiAl alloy ingots beyond laboratory scale. Intermetallics. 2007;15(5):625.CrossRef Chen GL, Xu XJ, Teng ZK, Wang YL, Lin JP. Microsegregation in high Nb containing TiAl alloy ingots beyond laboratory scale. Intermetallics. 2007;15(5):625.CrossRef
[27]
Zurück zum Zitat Liu DR, Guo JJ, Wu SP, Su YQ, Fu HZ. Stochastic modeling of columnar-to-equiaxed transition in Ti–(45–48 at%) Al alloy ingots. Mater Sci Eng A. 2006;415(1):184.CrossRef Liu DR, Guo JJ, Wu SP, Su YQ, Fu HZ. Stochastic modeling of columnar-to-equiaxed transition in Ti–(45–48 at%) Al alloy ingots. Mater Sci Eng A. 2006;415(1):184.CrossRef
[28]
Zurück zum Zitat Yao WJ, Wei BB. Rapid growth of nickel dendrite in highly undercooled Ni–Mo alloys. Sci China Ser E. 2003;46(6):593.CrossRef Yao WJ, Wei BB. Rapid growth of nickel dendrite in highly undercooled Ni–Mo alloys. Sci China Ser E. 2003;46(6):593.CrossRef
[29]
Zurück zum Zitat Fu HZ, Geng XG. High rate directional solidification and its application in single crystal superalloys. Sci Technol Adv Mater. 2001;2(1):197.CrossRef Fu HZ, Geng XG. High rate directional solidification and its application in single crystal superalloys. Sci Technol Adv Mater. 2001;2(1):197.CrossRef
[30]
Zurück zum Zitat Kim JH, Kim SW, Lee HN, Oh MH, Inui H, Wee DM. Effects of Si and C additions on the thermal stability of directionally solidified TiAl–Nb alloys. Intermetallics. 2005;13(10):1038.CrossRef Kim JH, Kim SW, Lee HN, Oh MH, Inui H, Wee DM. Effects of Si and C additions on the thermal stability of directionally solidified TiAl–Nb alloys. Intermetallics. 2005;13(10):1038.CrossRef
[31]
Zurück zum Zitat Su YQ, Liu C, Li XZ, Guo JJ, Li BS, Jia J, Fu HZ. Microstructure selection during the directionally peritectic solidification of Ti–Al binary system. Intermetallics. 2005;13(3):267.CrossRef Su YQ, Liu C, Li XZ, Guo JJ, Li BS, Jia J, Fu HZ. Microstructure selection during the directionally peritectic solidification of Ti–Al binary system. Intermetallics. 2005;13(3):267.CrossRef
Metadaten
Titel
Phase selection and solidification path transition of Ti–48Al–xNb alloys with different cooling rates
verfasst von
Tan He
Rui Hu
Jie-Ren Yang
Heng-Zhi Fu
Publikationsdatum
17.05.2017
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 1/2023
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-017-0909-6

Weitere Artikel der Ausgabe 1/2023

Rare Metals 1/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.