Skip to main content
Erschienen in: Engineering with Computers 5/2023

04.01.2023 | Original Article

A PDROD model of reinforced concrete based on peridynamics and rod elements

verfasst von: Xiongwu Yang, Fengshou Li, Weicheng Gao, Wei Liu, Xiaole Li

Erschienen in: Engineering with Computers | Ausgabe 5/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The difficulties in dealing with steel skeleton frames and low computational efficiency are the major obstacles for applying peridynamics (PD) to model reinforced concrete (RC) structures. This paper proposes a new reinforced concrete model, named PDROD, in which the concrete is modeled by PD theory and the reinforcement is modeled by rod elements. A bonding formulation is derived to characterize the interaction between the concrete and reinforcements, guaranteeing the consistence of load transfer between the two mediums. Thanks to the new bonding model, the discretization of the concrete and reinforcements does not necessarily need to be coincident, facilitating the application of PDROD in modeling RC structures whose skeleton frames are with complex geometries. The PDROD model not only gives full play to the advantages of PD theory in damage problems without additional failure criteria and stiffness degradation model, but also significantly increases the numerical efficiency of computation, which extends the applicability of PD to modeling real-scale RC structures. The accuracy and efficiency of the PDROD model are demonstrated by simulating a series of examples of concrete plates with reinforcing bars. Good agreements have been observed between the results from PDROD and the classical FEM predictions. The challenging benchmarks on the Stuttgart Shear Tests were also simulated to demonstrate the capability of the PDROD model in quasi-brittle fracture problems of large-scale RC structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wu J-Y (2018) A geometrically regularized gradient-damage model with energetic equivalence. Comput Methods Appl Mech Engrg 328:612–637MathSciNetMATH Wu J-Y (2018) A geometrically regularized gradient-damage model with energetic equivalence. Comput Methods Appl Mech Engrg 328:612–637MathSciNetMATH
2.
Zurück zum Zitat Kuhl E, Ramm E, de Borst R (2000) An anisotropic gradient damage model for quasi-brittle materials. Comput Methods Appl Mech Engrg 183(1–2):87–103MATH Kuhl E, Ramm E, de Borst R (2000) An anisotropic gradient damage model for quasi-brittle materials. Comput Methods Appl Mech Engrg 183(1–2):87–103MATH
3.
Zurück zum Zitat Bažant ZP, Oh BH (1983) Crack band theory for fracture of concrete. Mat Constr 16(3):155–177 Bažant ZP, Oh BH (1983) Crack band theory for fracture of concrete. Mat Constr 16(3):155–177
4.
Zurück zum Zitat Wu J-Y, Li F-B (2015) An improved stable XFEM (Is-XFEM) with a novel enrichment function for the computational modeling of cohesive cracks. Comput Methods Appl Mech Eng 295:77–107MathSciNetMATH Wu J-Y, Li F-B (2015) An improved stable XFEM (Is-XFEM) with a novel enrichment function for the computational modeling of cohesive cracks. Comput Methods Appl Mech Eng 295:77–107MathSciNetMATH
5.
Zurück zum Zitat Song J-H, Areias P, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng 67:868–893MATH Song J-H, Areias P, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng 67:868–893MATH
6.
Zurück zum Zitat Chau-Dinh T, Zi G, Lee P-S, Rabczuk T, Song J-H (2012) Phantom-node method for shell models with arbitrary cracks. Comput Struct 9293:242–246 Chau-Dinh T, Zi G, Lee P-S, Rabczuk T, Song J-H (2012) Phantom-node method for shell models with arbitrary cracks. Comput Struct 9293:242–246
7.
Zurück zum Zitat Wang Y, Waisman H, Harari I (2017) Direct evaluation of stress intensity factors for curved cracks using Irwin’s integral and XFEM with high-order enrichment functions. Int J Numer Methods Eng 112(7):629–654MathSciNet Wang Y, Waisman H, Harari I (2017) Direct evaluation of stress intensity factors for curved cracks using Irwin’s integral and XFEM with high-order enrichment functions. Int J Numer Methods Eng 112(7):629–654MathSciNet
8.
Zurück zum Zitat Geers M, Borst RD, Peerlings R (2000) Damage and crack modeling in single-edge and double-edge notched concrete beams. Eng Fract Mech 65:247–261 Geers M, Borst RD, Peerlings R (2000) Damage and crack modeling in single-edge and double-edge notched concrete beams. Eng Fract Mech 65:247–261
9.
Zurück zum Zitat Saloustros S, Pel L, Cervera M, Roca P (2017) Finite element modelling of internal and multiple localized cracks. Comput Mech 59:299–316 Saloustros S, Pel L, Cervera M, Roca P (2017) Finite element modelling of internal and multiple localized cracks. Comput Mech 59:299–316
10.
Zurück zum Zitat Zhou S, Rabczuk T, Zhuang X (2018) Phase field modeling of quasi-static and dynamic crack propagation: comsol implementation and case studies. Adv Eng Software 122:31–49 Zhou S, Rabczuk T, Zhuang X (2018) Phase field modeling of quasi-static and dynamic crack propagation: comsol implementation and case studies. Adv Eng Software 122:31–49
11.
Zurück zum Zitat Zhang Y, Zhuang X (2019) Cracking elements method for dynamic brittle fracture. Theor Appl Fract Mec 102:1–9 Zhang Y, Zhuang X (2019) Cracking elements method for dynamic brittle fracture. Theor Appl Fract Mec 102:1–9
12.
Zurück zum Zitat Zhang Y, Mang HA (2020) Global cracking elements: a novel tool for Galerkin-based approaches simulating quasi-brittle fracture. Int J Numer Methods Eng 121:2462–2480MathSciNet Zhang Y, Mang HA (2020) Global cracking elements: a novel tool for Galerkin-based approaches simulating quasi-brittle fracture. Int J Numer Methods Eng 121:2462–2480MathSciNet
13.
Zurück zum Zitat Zhang Y, Lackner R, Zeiml M, Mang HA (2015) Strong discontinuity embedded approach with standard SOS formulation: element formulation, energy-based crack-tracking strategy, and validations. Comput Methods Appl Mech Engrg 287:335–366MathSciNetMATH Zhang Y, Lackner R, Zeiml M, Mang HA (2015) Strong discontinuity embedded approach with standard SOS formulation: element formulation, energy-based crack-tracking strategy, and validations. Comput Methods Appl Mech Engrg 287:335–366MathSciNetMATH
14.
Zurück zum Zitat Zhang Y, Huang J, Yuan Y, Mang HA (2021) Cracking elements method with a dissipation-based arc-length approach. Finite Elem Anal Des 195:103573MathSciNet Zhang Y, Huang J, Yuan Y, Mang HA (2021) Cracking elements method with a dissipation-based arc-length approach. Finite Elem Anal Des 195:103573MathSciNet
15.
Zurück zum Zitat Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H (2010) A simple and robust three-dimensional cracking-particle method without enrichment. Comput Methods Appl Mech Engrg 199:2437–2455MATH Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H (2010) A simple and robust three-dimensional cracking-particle method without enrichment. Comput Methods Appl Mech Engrg 199:2437–2455MATH
16.
Zurück zum Zitat Fédération Internationale du Béton (fib) (2008) Practitioners’ guide to fnite element modelling of reinforced concrete structures Fédération Internationale du Béton (fib) (2008) Practitioners’ guide to fnite element modelling of reinforced concrete structures
17.
Zurück zum Zitat Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209MathSciNetMATH Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209MathSciNetMATH
18.
Zurück zum Zitat Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44:73–168 Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44:73–168
19.
Zurück zum Zitat Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 3:1526–1535 Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 3:1526–1535
20.
Zurück zum Zitat Hu W, Wang Y, Yu J et al (2013) Impact damage on a thin glass plate with a thin polycarbonate backing. Int J Impact Eng 62:152–165 Hu W, Wang Y, Yu J et al (2013) Impact damage on a thin glass plate with a thin polycarbonate backing. Int J Impact Eng 62:152–165
21.
Zurück zum Zitat Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fracture 162(1):229–244MATH Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fracture 162(1):229–244MATH
22.
Zurück zum Zitat Madenci E, Oterkus E (2014) Peridynamic Theory and Its Applications. Springer, New YorkMATH Madenci E, Oterkus E (2014) Peridynamic Theory and Its Applications. Springer, New YorkMATH
23.
Zurück zum Zitat Bobaru F et al (2016) Handbook of peridynamic modeling. Crc PressMATH Bobaru F et al (2016) Handbook of peridynamic modeling. Crc PressMATH
24.
Zurück zum Zitat Yang D, Dong W, Liu X et al (2018) Investigation on mode-I crack propagation in concrete using bond-based peridynamics with a new damage model. Eng Fract Mech 199:567–581 Yang D, Dong W, Liu X et al (2018) Investigation on mode-I crack propagation in concrete using bond-based peridynamics with a new damage model. Eng Fract Mech 199:567–581
25.
Zurück zum Zitat Zhang N, Gu Q, Huang S et al (2021) A practical bond-based peridynamic modeling of reinforced concrete structures. Eng Struct 244:112748 Zhang N, Gu Q, Huang S et al (2021) A practical bond-based peridynamic modeling of reinforced concrete structures. Eng Struct 244:112748
26.
Zurück zum Zitat Gu X, Zhang Q (2020) A modified conjugated bond-based peridynamic analysis for impact failure of concrete gravity dam. Meccanica 55:547–566MathSciNetMATH Gu X, Zhang Q (2020) A modified conjugated bond-based peridynamic analysis for impact failure of concrete gravity dam. Meccanica 55:547–566MathSciNetMATH
27.
Zurück zum Zitat Chen W, Gu X, Zhang Q, Xia X (2021) A refined thermo-mechanical fully coupled peridynamics with application to concrete cracking. Eng Fract Mech 242:107463 Chen W, Gu X, Zhang Q, Xia X (2021) A refined thermo-mechanical fully coupled peridynamics with application to concrete cracking. Eng Fract Mech 242:107463
28.
Zurück zum Zitat Li W, Guo L (2019) Dual-horizon peridynamics analysis of debonding failure in FRP-to-concrete bonded joints. Int J Concr Struct Mater 13(1):26 Li W, Guo L (2019) Dual-horizon peridynamics analysis of debonding failure in FRP-to-concrete bonded joints. Int J Concr Struct Mater 13(1):26
29.
Zurück zum Zitat Huang D, Zhang Q, Qiao P (2011) Damage and progressive failure of concrete structures using non-local peridynamic modeling. Sci China Techn Sci 54(003):591–596 Huang D, Zhang Q, Qiao P (2011) Damage and progressive failure of concrete structures using non-local peridynamic modeling. Sci China Techn Sci 54(003):591–596
30.
Zurück zum Zitat Wu L, Huang D, Xu Y, Wang L (2019) A non-ordinary state-based peridynamic formulation for failure of concrete subjected to impacting loads. Comput Model Eng Sci 118(3):561–581 Wu L, Huang D, Xu Y, Wang L (2019) A non-ordinary state-based peridynamic formulation for failure of concrete subjected to impacting loads. Comput Model Eng Sci 118(3):561–581
31.
Zurück zum Zitat Lu J, Zhang Y, Muhammad H, Chen Z et al (2019) 3D analysis of anchor bolt pullout in concrete materials using the non-ordinary state-based peridynamics. Eng Fract Mech 207:68–85 Lu J, Zhang Y, Muhammad H, Chen Z et al (2019) 3D analysis of anchor bolt pullout in concrete materials using the non-ordinary state-based peridynamics. Eng Fract Mech 207:68–85
32.
Zurück zum Zitat Lu J, Zhang Y, Muhammad H et al (2018) Peridynamic model for the numerical simulation of anchor bolt pullout in concrete. Math Probl Eng 3:1–10 Lu J, Zhang Y, Muhammad H et al (2018) Peridynamic model for the numerical simulation of anchor bolt pullout in concrete. Math Probl Eng 3:1–10
33.
Zurück zum Zitat Huang X, Kong X, Chen Z, Fang Q (2021) Peridynamics modelling of dynamic tensile failure in concrete. Int J Impact Eng 155:103918 Huang X, Kong X, Chen Z, Fang Q (2021) Peridynamics modelling of dynamic tensile failure in concrete. Int J Impact Eng 155:103918
34.
Zurück zum Zitat Shi C, Shi Q, Tong Q, Li S (2021) Peridynamics modeling and simulation of meso-scale fracture in recycled coarse aggregate (RCA) concretes. Theor Appl Fract Mec 114:102949 Shi C, Shi Q, Tong Q, Li S (2021) Peridynamics modeling and simulation of meso-scale fracture in recycled coarse aggregate (RCA) concretes. Theor Appl Fract Mec 114:102949
35.
Zurück zum Zitat Jin Y, Li L, Jia Y et al (2021) Numerical study of shrinkage and heating induced cracking in concrete materials and influence of inclusion stiffness with Peridynamics method. Comput Geotech 133:103998 Jin Y, Li L, Jia Y et al (2021) Numerical study of shrinkage and heating induced cracking in concrete materials and influence of inclusion stiffness with Peridynamics method. Comput Geotech 133:103998
36.
Zurück zum Zitat Zhao J, Chen Z, Mehrmashhadi J, Bobaru F (2020) A stochastic multiscale peridynamic model for corrosion-induced fracture in reinforced concrete. Eng Fract Mech 229:106969 Zhao J, Chen Z, Mehrmashhadi J, Bobaru F (2020) A stochastic multiscale peridynamic model for corrosion-induced fracture in reinforced concrete. Eng Fract Mech 229:106969
37.
Zurück zum Zitat Wu P, Zhao J, Chen Z, Bobaru F (2020) Validation of a stochastically homogenized peridynamic model for quasi-static fracture in concrete. Eng Fract Mech 237:107293 Wu P, Zhao J, Chen Z, Bobaru F (2020) Validation of a stochastically homogenized peridynamic model for quasi-static fracture in concrete. Eng Fract Mech 237:107293
38.
Zurück zum Zitat Zhao J, Jafarzadeh S, Rahmani M et al (2021) A peridynamic model for galvanic corrosion and fracture. Electrochim Acta 391:138968 Zhao J, Jafarzadeh S, Rahmani M et al (2021) A peridynamic model for galvanic corrosion and fracture. Electrochim Acta 391:138968
39.
Zurück zum Zitat Gerstle W, Sau N, Silling S (2007) Peridynamic modeling of concrete structures. Nucl Eng Des 237:1250–1258 Gerstle W, Sau N, Silling S (2007) Peridynamic modeling of concrete structures. Nucl Eng Des 237:1250–1258
40.
Zurück zum Zitat Gerstle W, Sakhavand N, Chapman S (2010) Peridynamic and continuum models of reinforced concrete lap splice compared, in: Proceedings of the 7th International Conference on Fracture Mechanics of Concrete and Concrete Structures, FraMCoS-7, Jeju, South Korea, ISBN 978-89-5708-180-8. Gerstle W, Sakhavand N, Chapman S (2010) Peridynamic and continuum models of reinforced concrete lap splice compared, in: Proceedings of the 7th International Conference on Fracture Mechanics of Concrete and Concrete Structures, FraMCoS-7, Jeju, South Korea, ISBN 978-89-5708-180-8.
41.
Zurück zum Zitat Chen X, Yong Y, Zhang Y, Yuan X (2021) Peridynamic modeling of prefabricated beams post-cast with steelfiber reinforced high-strength concrete. Struct Concr 22:445–456. Chen X, Yong Y, Zhang Y, Yuan X (2021) Peridynamic modeling of prefabricated beams post-cast with steelfiber reinforced high-strength concrete. Struct Concr 22:445–456.
42.
Zurück zum Zitat Xia Y, Fan C, Shen F, Qian W (2021) Peridynamic simulation of failure process of reinforced concrete structures. Chin J Appl Mech 38(1):143–149 Xia Y, Fan C, Shen F, Qian W (2021) Peridynamic simulation of failure process of reinforced concrete structures. Chin J Appl Mech 38(1):143–149
43.
Zurück zum Zitat Sau N, Mendoza JM, Almada AB (2019) Peridynamic modelling of reinforced concrete structures. Eng Fail Anal 103:266–274 Sau N, Mendoza JM, Almada AB (2019) Peridynamic modelling of reinforced concrete structures. Eng Fail Anal 103:266–274
44.
Zurück zum Zitat Yaghoobi A, Chorzepa MG (2017) Fracture analysis of fiber reinforced concrete structures in the micropolar peridynamic analysis framework. Eng Fract Mech 169:238–250 Yaghoobi A, Chorzepa MG (2017) Fracture analysis of fiber reinforced concrete structures in the micropolar peridynamic analysis framework. Eng Fract Mech 169:238–250
45.
Zurück zum Zitat Shi H, Qian S, Xu T et al (2016) Study on reinforced concrete structure failure based on peridynamic theories. Guizhou Science 34(6):64–68 Shi H, Qian S, Xu T et al (2016) Study on reinforced concrete structure failure based on peridynamic theories. Guizhou Science 34(6):64–68
46.
Zurück zum Zitat Hattori G, Hobbs M, Orr J (2021) A review on the developments of peridynamics for reinforced concrete structures. Arch Comput Method Eng 28:4655–4686 Hattori G, Hobbs M, Orr J (2021) A review on the developments of peridynamics for reinforced concrete structures. Arch Comput Method Eng 28:4655–4686
47.
Zurück zum Zitat Macek RW, Silling SA (2007) Peridynamics via finite element analysis. Finite Elem Anal Des 43(15):1169–1178MathSciNet Macek RW, Silling SA (2007) Peridynamics via finite element analysis. Finite Elem Anal Des 43(15):1169–1178MathSciNet
48.
Zurück zum Zitat Kilic B, Madenci E (2010) An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory. Theor Appl Fract Mec 53(3):194–204 Kilic B, Madenci E (2010) An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory. Theor Appl Fract Mec 53(3):194–204
49.
Zurück zum Zitat Leonhardt F, Walther R (1964) The Stuttgart Shear Tests, 1961: Contributions to the treatment of the problems of shear in reinforced concrete construction. A translation of articles that appeared in Beton- und Stahlbetonbau. 56 (12) (1961) and 57 (2, 3, 6, 7, 8) (1962), Cement and Concrete Association, London Leonhardt F, Walther R (1964) The Stuttgart Shear Tests, 1961: Contributions to the treatment of the problems of shear in reinforced concrete construction. A translation of articles that appeared in Beton- und Stahlbetonbau. 56 (12) (1961) and 57 (2, 3, 6, 7, 8) (1962), Cement and Concrete Association, London
50.
Zurück zum Zitat Hobbs M, Hattori G, Orr J (2022) Predicting shear failure in reinforced concrete members using a three-dimensional peridynamic framework. Comput Struct 258:106682 Hobbs M, Hattori G, Orr J (2022) Predicting shear failure in reinforced concrete members using a three-dimensional peridynamic framework. Comput Struct 258:106682
Metadaten
Titel
A PDROD model of reinforced concrete based on peridynamics and rod elements
verfasst von
Xiongwu Yang
Fengshou Li
Weicheng Gao
Wei Liu
Xiaole Li
Publikationsdatum
04.01.2023
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 5/2023
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-022-01774-8

Weitere Artikel der Ausgabe 5/2023

Engineering with Computers 5/2023 Zur Ausgabe

Neuer Inhalt