Skip to main content
Erschienen in: Microsystem Technologies 3/2020

06.09.2019 | Technical Paper

A piezoelectric cantilever-beam energy harvester (PCEH) with a rectangular hole in the metal substrate

Erschienen in: Microsystem Technologies | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to improve the energy conversion performance of a piezoelectric cantilever-beam energy harvester (PCEH), a novel PCEH is developed and designed according to the typical PCEH. Its middle layer is a metal substrate with a rectangular hole. The mathematical model of the PCEH is analyzed, and the mathematical expressions of the eigenfrequency, the displacement of the proof mass and the output voltage and power are derived. In order to verify the validity of the model, the eigenfrequency and frequency domain are analyzed by using COMSOL and Matlab, and the influence of frequency, load resistance and acceleration on voltage and power is studied. Finally, the experimental verification was carried out to further confirm. The results show that the first-order eigenfrequency of the novel PCEH is 43.7 Hz, the optimal output power is 10.69 mW. Therefore, the novel PCEH has a lower frequency, a wider frequency band, and higher output voltage and power, and improves energy conversion performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Antaki JF, Bertocci GE et al (1995) Gait-powered autologous battery charging system for artificial organs. ASAIO J 41:588–595CrossRef Antaki JF, Bertocci GE et al (1995) Gait-powered autologous battery charging system for artificial organs. ASAIO J 41:588–595CrossRef
Zurück zum Zitat Bayrashev A, Robbins WP, Ziaie B (2004) Low frequency wireless powering of micro-systems using piezoelectric-magnetostric-tive laminate composite. Sens Actuators A 114(2–3):244–249CrossRef Bayrashev A, Robbins WP, Ziaie B (2004) Low frequency wireless powering of micro-systems using piezoelectric-magnetostric-tive laminate composite. Sens Actuators A 114(2–3):244–249CrossRef
Zurück zum Zitat Chiu Y, Tseng VFG (2008) A capacitive vibration-to-electricity energy converter with integrated mechanical switches. J Micromech Microeng 18:104004CrossRef Chiu Y, Tseng VFG (2008) A capacitive vibration-to-electricity energy converter with integrated mechanical switches. J Micromech Microeng 18:104004CrossRef
Zurück zum Zitat Daniel H, Bernd F et al (2009) Fabrication, characterization and modeling of electrostatic micro-generators. J Micromech Microeng 19:094001CrossRef Daniel H, Bernd F et al (2009) Fabrication, characterization and modeling of electrostatic micro-generators. J Micromech Microeng 19:094001CrossRef
Zurück zum Zitat Flatau AB, Staley ME (2005) Characterization of energy harvesting potential of Terfenol-D and Galfenol. Proc SPIE 5764:630–640CrossRef Flatau AB, Staley ME (2005) Characterization of energy harvesting potential of Terfenol-D and Galfenol. Proc SPIE 5764:630–640CrossRef
Zurück zum Zitat Feng L, Luo J, Shi G et al (2013) Frequency allocation for versatile occupancy of spectrum in wireless sensor networks. In: Proceedings of the 14th ACM Conference Mobile Ad Hoc 25(6):39-48 Feng L, Luo J, Shi G et al (2013) Frequency allocation for versatile occupancy of spectrum in wireless sensor networks. In: Proceedings of the 14th ACM Conference Mobile Ad Hoc 25(6):39-48
Zurück zum Zitat Huang J, O’Handley RC, Bono D (2003) New high-sensitivity hybrid magnetostrictive/electroactive magnetic field sensors. Proc SPIE 5050:229–237CrossRef Huang J, O’Handley RC, Bono D (2003) New high-sensitivity hybrid magnetostrictive/electroactive magnetic field sensors. Proc SPIE 5050:229–237CrossRef
Zurück zum Zitat Kim HW, Batra A, Priya S et al (2004) Energy harvesting using a piezoelectric “cymbal” transducer in dynamic environment. Jpn J Appl Phys 43:6178–6183CrossRef Kim HW, Batra A, Priya S et al (2004) Energy harvesting using a piezoelectric “cymbal” transducer in dynamic environment. Jpn J Appl Phys 43:6178–6183CrossRef
Zurück zum Zitat Li TL, Mohamed MA, Yahya I et al (2018a) Comparison of piezoelectric energy harvesting performance using silicon and graphene cantilever beam. Microsyst Technol 24(9):3783–3789CrossRef Li TL, Mohamed MA, Yahya I et al (2018a) Comparison of piezoelectric energy harvesting performance using silicon and graphene cantilever beam. Microsyst Technol 24(9):3783–3789CrossRef
Zurück zum Zitat Li KL, He QH, Wang JC et al (2018b) Wearable energy harvesters generating electricity from low-frequency human limb movement. Microsyst Nanoeng 4:24CrossRef Li KL, He QH, Wang JC et al (2018b) Wearable energy harvesters generating electricity from low-frequency human limb movement. Microsyst Nanoeng 4:24CrossRef
Zurück zum Zitat Liu HC, Quan CG, Cho JT et al (2011) A MEMS-based piezoelectric cantilever patterned with PZT thin film array for harvesting energy from low frequency vibrations. Phys Procedia 19:129–133CrossRef Liu HC, Quan CG, Cho JT et al (2011) A MEMS-based piezoelectric cantilever patterned with PZT thin film array for harvesting energy from low frequency vibrations. Phys Procedia 19:129–133CrossRef
Zurück zum Zitat Manjunath D, Chan MC, Ananda AL (2012) Indriya: a low-cost, 3D wireless sensor network testbed. Dev Netw Communities 90(4):302–316 Manjunath D, Chan MC, Ananda AL (2012) Indriya: a low-cost, 3D wireless sensor network testbed. Dev Netw Communities 90(4):302–316
Zurück zum Zitat Mikio U, Kentaro N, Sadayuki U (1996) Analysis of the transformation of mecha-nical impact energy to electric energy using piezoelectric vibrator. Jpn J Appl Phys 35:3267–3273CrossRef Mikio U, Kentaro N, Sadayuki U (1996) Analysis of the transformation of mecha-nical impact energy to electric energy using piezoelectric vibrator. Jpn J Appl Phys 35:3267–3273CrossRef
Zurück zum Zitat Mitcheson PD, Green TC, Yeatman EM et al (2004a) Architectures for vibration-driven micropower generators. JMEMS 3(13):429–440 Mitcheson PD, Green TC, Yeatman EM et al (2004a) Architectures for vibration-driven micropower generators. JMEMS 3(13):429–440
Zurück zum Zitat Mitcheson PD, Miao P, Stark BH et al (2004b) MEMS electrostatic micropower generator for low frequency operation. Sens Actuators A 115:523–529CrossRef Mitcheson PD, Miao P, Stark BH et al (2004b) MEMS electrostatic micropower generator for low frequency operation. Sens Actuators A 115:523–529CrossRef
Zurück zum Zitat Salem S, Othman S (2015) Micro-electro-mechanical system (MEMS)-based piezo-electric energy harvester for ambient vibrations. Procedia-Soc Behav Sci 195:2353–2362CrossRef Salem S, Othman S (2015) Micro-electro-mechanical system (MEMS)-based piezo-electric energy harvester for ambient vibrations. Procedia-Soc Behav Sci 195:2353–2362CrossRef
Zurück zum Zitat Shearwood C, Yates RB (1997) Development of an electromagnetic micro-generator. Electron Lett 33(22):1883–1884CrossRef Shearwood C, Yates RB (1997) Development of an electromagnetic micro-generator. Electron Lett 33(22):1883–1884CrossRef
Zurück zum Zitat Umeda M, Nakamura K, Ueha S (1997) Energy storage characteristics of a piezogenerator using impact induced vibration. Jpn J Appl Phys 36:3146–3151CrossRef Umeda M, Nakamura K, Ueha S (1997) Energy storage characteristics of a piezogenerator using impact induced vibration. Jpn J Appl Phys 36:3146–3151CrossRef
Zurück zum Zitat Usharani R, Uma G, Umapathy M et al (2017) A new piezoelectric-patched cantilever beam with a step section for high performance of energy harvesting. Sens Actuators A 265:47–61CrossRef Usharani R, Uma G, Umapathy M et al (2017) A new piezoelectric-patched cantilever beam with a step section for high performance of energy harvesting. Sens Actuators A 265:47–61CrossRef
Zurück zum Zitat Wang L, Yuan FG (2008) Vibration energy harvesting by magnetostrictive material. Smart Mater Struct 17(4):45009–45014CrossRef Wang L, Yuan FG (2008) Vibration energy harvesting by magnetostrictive material. Smart Mater Struct 17(4):45009–45014CrossRef
Zurück zum Zitat Williams CB, Yates RB (1996) Analysis of a micro-electric generator for Microsystems. Sens Actuators A 52(1–3):8–11CrossRef Williams CB, Yates RB (1996) Analysis of a micro-electric generator for Microsystems. Sens Actuators A 52(1–3):8–11CrossRef
Zurück zum Zitat Williams CB, Shearwood C, Harradine MA et al (2001) Development of an electro-magnettic micro-generator. IEE Proc-Circuits Devices Syst 148(6):337–342CrossRef Williams CB, Shearwood C, Harradine MA et al (2001) Development of an electro-magnettic micro-generator. IEE Proc-Circuits Devices Syst 148(6):337–342CrossRef
Zurück zum Zitat Yi JW, Shih WY, Shih WH (2002) Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers. J Appl Phys 91:1680–1686CrossRef Yi JW, Shih WY, Shih WH (2002) Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers. J Appl Phys 91:1680–1686CrossRef
Zurück zum Zitat Zhang GY, Gao SQ, Liu HP, Niu SH (2017) A low frequency piezoelectric energy harvester with trapezoidal cantilever beam: theory and experiment. Microsyst Technol 23(8):3457–3466CrossRef Zhang GY, Gao SQ, Liu HP, Niu SH (2017) A low frequency piezoelectric energy harvester with trapezoidal cantilever beam: theory and experiment. Microsyst Technol 23(8):3457–3466CrossRef
Metadaten
Titel
A piezoelectric cantilever-beam energy harvester (PCEH) with a rectangular hole in the metal substrate
Publikationsdatum
06.09.2019
Erschienen in
Microsystem Technologies / Ausgabe 3/2020
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-019-04608-8

Weitere Artikel der Ausgabe 3/2020

Microsystem Technologies 3/2020 Zur Ausgabe

Neuer Inhalt