Skip to main content
Erschienen in: Neural Computing and Applications 2/2024

17.10.2023 | Original Article

A projected decentralized variance-reduction algorithm for constrained optimization problems

verfasst von: Shaojiang Deng, Shanfu Gao, Qingguo Lü, Yantao Li, Huaqing Li

Erschienen in: Neural Computing and Applications | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Solving constrained optimization problems that require processing large-scale data is of significant value in practical applications, and such problems can be described as the minimization of a finite-sum of local convex functions. Many existing works addressing constrained optimization problems have achieved a linear convergence rate to the exact optimal solution if the constant step-size was sufficiently small. However, they still suffer from low computational efficiency because of the computation of the local batch gradients at each iteration. Considering high computational efficiency to resolve the constrained optimization problems, we introduce the projection operator and variance-reduction technique to propose a novel projected decentralized variance-reduction algorithm, namely P-DVR, to tackle the constrained optimization problem subject to a closed convex set. Theoretical analysis shows that if the local function is strongly convex and smooth, the P-DVR algorithm can converge to the exact optimal solution at a linear convergence rate \({\mathcal {O}} ( {\hat{\lambda }}^{k} )\) with a sufficiently small step-size, where \(0< {\hat{\lambda }} < 1\). Finally, we experimentally validate the effectiveness of the algorithm, i.e., the algorithm possesses high computational efficiency and exact convergence.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Blatt D, Hero AO (2006) Energy-based sensor network source localization via projection onto convex sets. IEEE Trans Signal Process 54(9):3614–3619 Blatt D, Hero AO (2006) Energy-based sensor network source localization via projection onto convex sets. IEEE Trans Signal Process 54(9):3614–3619
3.
Zurück zum Zitat He X, Yu J, Huang T, Li C (2019) Distributed power management for dynamic economic dispatch in the multimicrogrids environ-ment. IEEE Trans Control Syst Technol 27(4):1651–1658 He X, Yu J, Huang T, Li C (2019) Distributed power management for dynamic economic dispatch in the multimicrogrids environ-ment. IEEE Trans Control Syst Technol 27(4):1651–1658
4.
Zurück zum Zitat Maros M and Jalden J (2019) ECO-PANDA: A computationally economic, geometrically converging dual optimization method on time-varying undirected graphs, Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, United Kingdom , May 2019, pp. 5257-5261 Maros M and Jalden J (2019) ECO-PANDA: A computationally economic, geometrically converging dual optimization method on time-varying undirected graphs, Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, United Kingdom , May 2019, pp. 5257-5261
5.
Zurück zum Zitat Wen X, Wang Y, Qin S (2021) A nonautonomous-differential-inclusion neurodynamic approach for nonsmooth distributed optimization on multi-agent systems. Neural Comput Appl 33(20):13909–13920 Wen X, Wang Y, Qin S (2021) A nonautonomous-differential-inclusion neurodynamic approach for nonsmooth distributed optimization on multi-agent systems. Neural Comput Appl 33(20):13909–13920
6.
Zurück zum Zitat Tsitsiklis J, Bertsekas D, Athans M (1986) Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Trans Autom Control 31(9):803–812MathSciNet Tsitsiklis J, Bertsekas D, Athans M (1986) Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Trans Autom Control 31(9):803–812MathSciNet
7.
Zurück zum Zitat Li Y, Zhang H, Huang B, Han J (2020) A distributed Newton-Raphson-based coordination algorithm for multi-agent optimization with discrete-time communication. Neural Comput Appl 32(9):4649–4663 Li Y, Zhang H, Huang B, Han J (2020) A distributed Newton-Raphson-based coordination algorithm for multi-agent optimization with discrete-time communication. Neural Comput Appl 32(9):4649–4663
8.
Zurück zum Zitat Kar S, Moura JMF (2013) Consensus + innovations distributed inference over networks: cooperation and sensing in networked systems. IEEE Signal Process Mag 30(3):99–109 Kar S, Moura JMF (2013) Consensus + innovations distributed inference over networks: cooperation and sensing in networked systems. IEEE Signal Process Mag 30(3):99–109
10.
Zurück zum Zitat Nedic A (2020) Distributed gradient methods for convex machine learning problems in networks: distributed optimization. IEEE Signal Process Mag 37(3):92–101 Nedic A (2020) Distributed gradient methods for convex machine learning problems in networks: distributed optimization. IEEE Signal Process Mag 37(3):92–101
11.
Zurück zum Zitat Liu Q, Wang J (2015) A second-order multi-agent network for bound constrained distributed optimization. IEEE Trans Autom Control 60(12):3310–3315MathSciNet Liu Q, Wang J (2015) A second-order multi-agent network for bound constrained distributed optimization. IEEE Trans Autom Control 60(12):3310–3315MathSciNet
12.
Zurück zum Zitat Shi G, Johansson KH, Hong Y (2013) Reaching an optimal consensus: dynamical systems that compute intersections of convex sets. IEEE Trans Autom Control 58(3):610–622MathSciNet Shi G, Johansson KH, Hong Y (2013) Reaching an optimal consensus: dynamical systems that compute intersections of convex sets. IEEE Trans Autom Control 58(3):610–622MathSciNet
13.
Zurück zum Zitat Qiu Z, Yang S, Wang J (2016) Distributed constrained optimal consensus of multi-agent systems. Automatica 68:209–215MathSciNet Qiu Z, Yang S, Wang J (2016) Distributed constrained optimal consensus of multi-agent systems. Automatica 68:209–215MathSciNet
14.
Zurück zum Zitat Lin P and Ren W (2012) Distributed subgradient projection algorithm for multi-agent optimization with nonidentical constraints and switching topologies, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI, USA, , pp. 6813-6818 Lin P and Ren W (2012) Distributed subgradient projection algorithm for multi-agent optimization with nonidentical constraints and switching topologies, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI, USA, , pp. 6813-6818
15.
Zurück zum Zitat Lin P, Ren W, Farrell JA (2017) Distributed continuous-time optimization: nonuniform gradient gains, finite-time convergence, and convex constraint set. IEEE Trans Autom Control 62(5):2239–2253MathSciNet Lin P, Ren W, Farrell JA (2017) Distributed continuous-time optimization: nonuniform gradient gains, finite-time convergence, and convex constraint set. IEEE Trans Autom Control 62(5):2239–2253MathSciNet
16.
Zurück zum Zitat Yan Z, Wang J, Li G (2014) A collective neurodynamic optimization approach to bound-constrained nonconvex optimization. Neural Netw 55:20–29 Yan Z, Wang J, Li G (2014) A collective neurodynamic optimization approach to bound-constrained nonconvex optimization. Neural Netw 55:20–29
17.
Zurück zum Zitat Huang Z, Liu F, Tang M, Qiu J, Peng Y (2020) A distributed computing framework based on lightweight variance reduction method to accelerate machine learning training on blockchain. China Commun 17(9):77–89 Huang Z, Liu F, Tang M, Qiu J, Peng Y (2020) A distributed computing framework based on lightweight variance reduction method to accelerate machine learning training on blockchain. China Commun 17(9):77–89
18.
Zurück zum Zitat He L, Ye J, Jianwei E (2021) Accelerated proximal stochastic variance reduction for DC optimization. Neural Comput Appl 33(20):13163–13181 He L, Ye J, Jianwei E (2021) Accelerated proximal stochastic variance reduction for DC optimization. Neural Comput Appl 33(20):13163–13181
19.
Zurück zum Zitat Xin R, Khan UA, Kar S (2020) Variance-reduced decentralized stochastic optimization with accelerated convergence. IEEE Trans Signal Process 68:6255–6271MathSciNet Xin R, Khan UA, Kar S (2020) Variance-reduced decentralized stochastic optimization with accelerated convergence. IEEE Trans Signal Process 68:6255–6271MathSciNet
20.
Zurück zum Zitat Defazio A, Bach F, Lacoste-Julien S (2014) SAGA: a fast incremental gradient method with support for non-strongly convex composite objectives. Adv Neural Inf Process Syst 27:1646–1654 Defazio A, Bach F, Lacoste-Julien S (2014) SAGA: a fast incremental gradient method with support for non-strongly convex composite objectives. Adv Neural Inf Process Syst 27:1646–1654
21.
Zurück zum Zitat De S, Goldstein T (2016) “Efficient distributed SGD with variance reduction," 2016 IEEE 16th International Conference on Data Mining (ICDM), Barcelona, Spain, pp. 111-120 De S, Goldstein T (2016) “Efficient distributed SGD with variance reduction," 2016 IEEE 16th International Conference on Data Mining (ICDM), Barcelona, Spain, pp. 111-120
22.
Zurück zum Zitat Shang-Guan S, Yin J (2017) A fast distributed principal component analysis with variance reduction, (2017) 16th International Symposium on Distributed Computing and Applications to Business, Engineering and Science (DCABES). Anyang, China 2017:11–14 Shang-Guan S, Yin J (2017) A fast distributed principal component analysis with variance reduction, (2017) 16th International Symposium on Distributed Computing and Applications to Business, Engineering and Science (DCABES). Anyang, China 2017:11–14
23.
Zurück zum Zitat Zhang K, Liao X, Lü Q (2022) Privacy-protected decentralized dual averaging push with edge-based correlated perturbations over time-varying directed networks. IEEE Trans Netw Sci Eng 9(6):4145–4158MathSciNet Zhang K, Liao X, Lü Q (2022) Privacy-protected decentralized dual averaging push with edge-based correlated perturbations over time-varying directed networks. IEEE Trans Netw Sci Eng 9(6):4145–4158MathSciNet
24.
Zurück zum Zitat Nedic A, Ozdaglar A, Parrilo PA (2010) Constrained consensus and optimization in multi-agent networks. IEEE Trans Autom Control 55(4):922–938MathSciNet Nedic A, Ozdaglar A, Parrilo PA (2010) Constrained consensus and optimization in multi-agent networks. IEEE Trans Autom Control 55(4):922–938MathSciNet
25.
Zurück zum Zitat Duchi JC, Agarwal A, Wainwright MJ (2012) Dual averaging for distributed optimization: convergence analysis and network scaling. IEEE Trans Autom Control 57(3):592–606MathSciNet Duchi JC, Agarwal A, Wainwright MJ (2012) Dual averaging for distributed optimization: convergence analysis and network scaling. IEEE Trans Autom Control 57(3):592–606MathSciNet
26.
Zurück zum Zitat Liu H, Yu W, Chen G (2022) Discrete-time algorithms for distributed constrained convex optimization with linear convergence rates. IEEE Trans Cybern 52(6):4874–4885 Liu H, Yu W, Chen G (2022) Discrete-time algorithms for distributed constrained convex optimization with linear convergence rates. IEEE Trans Cybern 52(6):4874–4885
27.
Zurück zum Zitat Nedic A, Ozdaglar A (2009) Distributed subgradient methods for multi-agent optimization. IEEE Trans Autom Control 54(1):48–61MathSciNet Nedic A, Ozdaglar A (2009) Distributed subgradient methods for multi-agent optimization. IEEE Trans Autom Control 54(1):48–61MathSciNet
28.
Zurück zum Zitat Sayin MO, Vanli ND, Kozat SS, Basar T (2017) Stochastic subgradient algorithms for strongly convex optimization over distributed networks. IEEE Trans Netw Sci Eng 4(4):248–260MathSciNet Sayin MO, Vanli ND, Kozat SS, Basar T (2017) Stochastic subgradient algorithms for strongly convex optimization over distributed networks. IEEE Trans Netw Sci Eng 4(4):248–260MathSciNet
29.
Zurück zum Zitat Li H, Lü Q, Chen G, Huang T, Dong Z (2021) Distributed constrained optimization over unbalanced directed networks using asynchronous broadcast-based algorithm. IEEE Trans Autom Control 66(3):1102–1115MathSciNet Li H, Lü Q, Chen G, Huang T, Dong Z (2021) Distributed constrained optimization over unbalanced directed networks using asynchronous broadcast-based algorithm. IEEE Trans Autom Control 66(3):1102–1115MathSciNet
30.
Zurück zum Zitat Wang Z, Wang D, Gu D (2020) Distributed optimal state consensus for multiple circuit systems with disturbance rejection. IEEE Trans Netw Sci Eng 7(4):2926–2939MathSciNet Wang Z, Wang D, Gu D (2020) Distributed optimal state consensus for multiple circuit systems with disturbance rejection. IEEE Trans Netw Sci Eng 7(4):2926–2939MathSciNet
31.
Zurück zum Zitat Loizou N, Rabbat M and Richtárik P(2019)“Provably accelerated randomized gossip algorithms," ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, pp. 7505-7509, Loizou N, Rabbat M and Richtárik P(2019)“Provably accelerated randomized gossip algorithms," ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, pp. 7505-7509,
32.
Zurück zum Zitat Jakovetic D, Xavier J, Moura J (2014) Fast distributed gradient methods. IEEE Trans Autom Control 59(5):1131–1146MathSciNet Jakovetic D, Xavier J, Moura J (2014) Fast distributed gradient methods. IEEE Trans Autom Control 59(5):1131–1146MathSciNet
33.
Zurück zum Zitat Li H, Lü Q, Huang T (2019) Convergence analysis of a distributed optimization algorithm with a general unbalanced directed communication network. IEEE Trans Netw Sci Eng 6(3):237–248MathSciNet Li H, Lü Q, Huang T (2019) Convergence analysis of a distributed optimization algorithm with a general unbalanced directed communication network. IEEE Trans Netw Sci Eng 6(3):237–248MathSciNet
34.
Zurück zum Zitat Nedic A, Olshevsky A, Shi W (2017) Achieving geometric convergence for distributed optimization over time-varying graphs. SIAM J Optim 27(4):2597–2633MathSciNet Nedic A, Olshevsky A, Shi W (2017) Achieving geometric convergence for distributed optimization over time-varying graphs. SIAM J Optim 27(4):2597–2633MathSciNet
35.
Zurück zum Zitat Qu G, Li N (2018) Harnessing smoothness to accelerate distributed optimization. IEEE Trans Control Netw Syst 5(3):1245–1260MathSciNet Qu G, Li N (2018) Harnessing smoothness to accelerate distributed optimization. IEEE Trans Control Netw Syst 5(3):1245–1260MathSciNet
36.
Zurück zum Zitat Xin R, Khan UA (2018) A linear algorithm for optimization over directed graphs with geometric convergence. IEEE Control Syst Lett 2(3):315–320MathSciNet Xin R, Khan UA (2018) A linear algorithm for optimization over directed graphs with geometric convergence. IEEE Control Syst Lett 2(3):315–320MathSciNet
37.
Zurück zum Zitat Lü Q, Li H, Xia D (2018) Geometrical convergence rate for distributed optimization with time-varying directed graphs and uncoordinated step-sizes. Inf Sci 422:516–530MathSciNet Lü Q, Li H, Xia D (2018) Geometrical convergence rate for distributed optimization with time-varying directed graphs and uncoordinated step-sizes. Inf Sci 422:516–530MathSciNet
38.
Zurück zum Zitat Shi W, Ling Q, Wu G, Yin W (2015) EXTRA: an exact first-order algorithm for decentralized consensus optimization. SIAM J Optim 25(2):944–966MathSciNet Shi W, Ling Q, Wu G, Yin W (2015) EXTRA: an exact first-order algorithm for decentralized consensus optimization. SIAM J Optim 25(2):944–966MathSciNet
39.
Zurück zum Zitat Qureshi MI, Xin R, Kar S, Khan UA (2021) S-ADDOPT: decentralized stochastic first-order optimization over directed graphs. IEEE Control Syst Lett 5(3):953–958MathSciNet Qureshi MI, Xin R, Kar S, Khan UA (2021) S-ADDOPT: decentralized stochastic first-order optimization over directed graphs. IEEE Control Syst Lett 5(3):953–958MathSciNet
40.
Zurück zum Zitat Pu S, Shi W, Xu J, Nedic A (2021) Push-pull gradient methods for distributed optimization in networks. IEEE Trans Autom Control 66(1):1–16MathSciNet Pu S, Shi W, Xu J, Nedic A (2021) Push-pull gradient methods for distributed optimization in networks. IEEE Trans Autom Control 66(1):1–16MathSciNet
41.
Zurück zum Zitat Bin M, Notarnicola I, Marconi L and Notarstefano G (2019)“A system theoretical perspective to gradient-tracking algorithms for distributed quadratic optimization," Proceedings of the 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, France, Dec. , pp. 2994-2999 Bin M, Notarnicola I, Marconi L and Notarstefano G (2019)“A system theoretical perspective to gradient-tracking algorithms for distributed quadratic optimization," Proceedings of the 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, France, Dec. , pp. 2994-2999
42.
Zurück zum Zitat Scutari G, Sun Y (2019) Distributed nonconvex constrained optimization over time-varying digraphs. Math Program 176(1–2):497–544MathSciNet Scutari G, Sun Y (2019) Distributed nonconvex constrained optimization over time-varying digraphs. Math Program 176(1–2):497–544MathSciNet
43.
Zurück zum Zitat Yang S, Liu Q, Wang J (2018) A collaborative neurodynamic approach to multiple-objective distributed optimization. IEEE Trans Neural Netw Learn Syst 29(4):981–992 Yang S, Liu Q, Wang J (2018) A collaborative neurodynamic approach to multiple-objective distributed optimization. IEEE Trans Neural Netw Learn Syst 29(4):981–992
44.
Zurück zum Zitat Stewart RH, Palmer TS, DuPont B (2021) A survey of multi-objective optimization methods and their applications for nuclear scientists and engineers. Prog Nucl Energy 138:103830 Stewart RH, Palmer TS, DuPont B (2021) A survey of multi-objective optimization methods and their applications for nuclear scientists and engineers. Prog Nucl Energy 138:103830
45.
Zurück zum Zitat Pereira JLJ, Oliver GA, Francisco MB, Cunha SS, Gomes GF (2022) A review of multi-objective optimization: methods and algorithms in mechanical engineering problems. Arch Comput Method Eng 29(4):2285–2308 Pereira JLJ, Oliver GA, Francisco MB, Cunha SS, Gomes GF (2022) A review of multi-objective optimization: methods and algorithms in mechanical engineering problems. Arch Comput Method Eng 29(4):2285–2308
46.
Zurück zum Zitat Andersson J (2000) “A survey of multiobjective optimization in engineering design,” Department of Mechanical Engineering, Linktjping University. Sweden Andersson J (2000) “A survey of multiobjective optimization in engineering design,” Department of Mechanical Engineering, Linktjping University. Sweden
47.
Zurück zum Zitat Coello CAC (2007) Evolutionary algorithms for solving multi-Objective problems in Genetic and Evolutionary Computation Series. Springer, US Coello CAC (2007) Evolutionary algorithms for solving multi-Objective problems in Genetic and Evolutionary Computation Series. Springer, US
48.
Zurück zum Zitat Zadeh L (1963) Optimality and non-scalar-valued performance criteria. IEEE Trans Autom Control 8(1):59–60 Zadeh L (1963) Optimality and non-scalar-valued performance criteria. IEEE Trans Autom Control 8(1):59–60
49.
Zurück zum Zitat Xie P, You K, Tempo R, Song S, Wu C (2018) Distributed convex optimization with inequality constraints over time-varying unbalanced digraphs. IEEE Trans Autom Control 63(12):4331–4337MathSciNet Xie P, You K, Tempo R, Song S, Wu C (2018) Distributed convex optimization with inequality constraints over time-varying unbalanced digraphs. IEEE Trans Autom Control 63(12):4331–4337MathSciNet
50.
Zurück zum Zitat Gao L, Deng S, Li H, Li C (2022) An event-triggered approach for gradient tracking in consensus-based distributed optimization. IEEE Trans Netw Sci Eng 9(2):510–523MathSciNet Gao L, Deng S, Li H, Li C (2022) An event-triggered approach for gradient tracking in consensus-based distributed optimization. IEEE Trans Netw Sci Eng 9(2):510–523MathSciNet
51.
Zurück zum Zitat Zhang J, You K, Cai K (2020) Distributed dual gradient tracking for resource allocation in unbalanced networks. IEEE Trans Signal Process 68:2186–2198MathSciNet Zhang J, You K, Cai K (2020) Distributed dual gradient tracking for resource allocation in unbalanced networks. IEEE Trans Signal Process 68:2186–2198MathSciNet
52.
Zurück zum Zitat Horn RA, Johnson CR (2012) Matrix Anal. Cambridge University Press, Cambridge Horn RA, Johnson CR (2012) Matrix Anal. Cambridge University Press, Cambridge
53.
Zurück zum Zitat Xiang Jim X (2013) A note on the cauchy-schwarz inequality. Amer Math Monthly 120(5):456–459MathSciNet Xiang Jim X (2013) A note on the cauchy-schwarz inequality. Amer Math Monthly 120(5):456–459MathSciNet
54.
Zurück zum Zitat Dua D and Graff C (2017) “UCI machine learning repository," Dua D and Graff C (2017) “UCI machine learning repository,"
55.
Zurück zum Zitat LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324 LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324
Metadaten
Titel
A projected decentralized variance-reduction algorithm for constrained optimization problems
verfasst von
Shaojiang Deng
Shanfu Gao
Qingguo Lü
Yantao Li
Huaqing Li
Publikationsdatum
17.10.2023
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 2/2024
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-023-09067-x

Weitere Artikel der Ausgabe 2/2024

Neural Computing and Applications 2/2024 Zur Ausgabe

Premium Partner