Skip to main content
Erschienen in: Wireless Personal Communications 4/2020

07.06.2020

A Quad Band Metamaterial Miniaturized Antenna for Wireless Applications with Gain Enhancement

Erschienen in: Wireless Personal Communications | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a designing of dual-coated miniaturized metamaterial inspired quad band antenna for wireless standards with gain enhancement. Proposed design has compactness in size with electrical dimension of 0.239 × 0.351 × 0.0127 λ (30 × 44 × 1.6 mm3), at lower frequency of 2.39 GHz. The antenna consist a double printed slotted hexagonal shape radiating section with implementation of metamaterial rectangular split ring resonator. Antenna achieve quad bands for wireless standards WLAN (2.4/5.8 GHz), WiMAX (3.5 GHz), IEEE 802.11P (WAVE-5.9 GHz), ITU assigned X bands (7.25–7.75, 7.9–8.4 GHz) and satellite communication systems operating bands (C-band: 7.4–8.9 GHz and X-band: 8–10 GHz for satellite TV). An acceptable gain, stable radiation characteristics and good impedance matching are observed at all the resonant frequencies of the proposed structure. By application of proposed frequency selective surface an average enhancement of gain is about 4–5 dB over the operating band. Antenna fabricated and tested represent good agreement between the simulated and measured results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ghatak, R., Mishra, R., & Poddar, D. (2008). Perturbed Sierpinski carpet antenna with CPW feed for IEEE 802.11a/b WLAN application. IEEE Antennas and Wireless Propagation Letters, 7, 742–745.CrossRef Ghatak, R., Mishra, R., & Poddar, D. (2008). Perturbed Sierpinski carpet antenna with CPW feed for IEEE 802.11a/b WLAN application. IEEE Antennas and Wireless Propagation Letters, 7, 742–745.CrossRef
2.
Zurück zum Zitat Xu, Y., Jiao, Y. C., & Luan, Y. C. (2012). Compact CPW-fed printed monopole antenna with triple band characteristics for WLAN/WiMAX applications. Electronics Letters, 48(24), 1519–1520.CrossRef Xu, Y., Jiao, Y. C., & Luan, Y. C. (2012). Compact CPW-fed printed monopole antenna with triple band characteristics for WLAN/WiMAX applications. Electronics Letters, 48(24), 1519–1520.CrossRef
3.
Zurück zum Zitat Sim, C. Y. D., Chen, H. D., Chiu, K. C., & Chao, C. H. (2012). Coplanar waveguide fed slot antenna for wireless local area network/worldwide interoperability for microwave access applications. IET Microwaves, Antennas and Propagation, 6(14), 1529–1535.CrossRef Sim, C. Y. D., Chen, H. D., Chiu, K. C., & Chao, C. H. (2012). Coplanar waveguide fed slot antenna for wireless local area network/worldwide interoperability for microwave access applications. IET Microwaves, Antennas and Propagation, 6(14), 1529–1535.CrossRef
4.
Zurück zum Zitat Li, X., Shi, X. W., Hu, W., Fei, P., & Yu, J. F. (2013). Compact triband ACS fed monopole antenna employing open ended slots for wireless communication. IEEE Antennas and Wireless Propagation Letters, 12, 388–391.CrossRef Li, X., Shi, X. W., Hu, W., Fei, P., & Yu, J. F. (2013). Compact triband ACS fed monopole antenna employing open ended slots for wireless communication. IEEE Antennas and Wireless Propagation Letters, 12, 388–391.CrossRef
5.
Zurück zum Zitat Basaran, S., Olgun, U., & Sertel, K. (2013). Multiband monopole antenna with complementary split ring resonators for WLAN and WiMAX applications. Electronics Letters, 49(10), 636–638.CrossRef Basaran, S., Olgun, U., & Sertel, K. (2013). Multiband monopole antenna with complementary split ring resonators for WLAN and WiMAX applications. Electronics Letters, 49(10), 636–638.CrossRef
6.
Zurück zum Zitat Xu, H. X., Wang, G. M., & Qi, M. Q. (2013). A miniaturized triple-band metamaterial antenna with radiation pattern selectivity and polarization diversity. Progress in Electromagnetics Research, 137, 275–292.CrossRef Xu, H. X., Wang, G. M., & Qi, M. Q. (2013). A miniaturized triple-band metamaterial antenna with radiation pattern selectivity and polarization diversity. Progress in Electromagnetics Research, 137, 275–292.CrossRef
7.
Zurück zum Zitat Saraswat, R., & Kumar, M. (2016). Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications. Progress in Electromagnetics Research B, 65, 65–80.CrossRef Saraswat, R., & Kumar, M. (2016). Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications. Progress in Electromagnetics Research B, 65, 65–80.CrossRef
8.
Zurück zum Zitat Zhu, J., & Eleftheriades, G. V. (2009). Dual band metamaterial inspired small monopole antenna for WiFi applications. Electronics Letters, 45(22), 1104–1106.CrossRef Zhu, J., & Eleftheriades, G. V. (2009). Dual band metamaterial inspired small monopole antenna for WiFi applications. Electronics Letters, 45(22), 1104–1106.CrossRef
9.
Zurück zum Zitat Xiong, J., Li, H., Jin, Y., & He, S. (2009). Modified TM020 mode of a rectangular patch antenna partially loaded with metamaterial for dual band applications. IEEE Antennas and Wireless Propagation Letters, 8, 1006–1009.CrossRef Xiong, J., Li, H., Jin, Y., & He, S. (2009). Modified TM020 mode of a rectangular patch antenna partially loaded with metamaterial for dual band applications. IEEE Antennas and Wireless Propagation Letters, 8, 1006–1009.CrossRef
10.
Zurück zum Zitat Dong, Y., Toyao, H., & Itoh, T. (2012). Design and characterization of miniaturized patch antennas loaded with complementary split ring resonators. IEEE Transactions on Antennas and Propagation, 60(2), 772–785.CrossRef Dong, Y., Toyao, H., & Itoh, T. (2012). Design and characterization of miniaturized patch antennas loaded with complementary split ring resonators. IEEE Transactions on Antennas and Propagation, 60(2), 772–785.CrossRef
11.
Zurück zum Zitat CST (Microwave Studio MWS) ver. 2014, Computer Simulation Technology. CST (Microwave Studio MWS) ver. 2014, Computer Simulation Technology.
12.
Zurück zum Zitat Kushwaha, N., & Kumar, R. (2013). Design of slotted ground hexagonal microstrip patch antenna and gain improvement with FSS screen. Progress in Electromagnetics Research B, 51, 177–199.CrossRef Kushwaha, N., & Kumar, R. (2013). Design of slotted ground hexagonal microstrip patch antenna and gain improvement with FSS screen. Progress in Electromagnetics Research B, 51, 177–199.CrossRef
13.
Zurück zum Zitat Smith, D. R., Schultz, S., Markos, P., & Soukoulis, C. M. (2002). Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients. Physical Review B, 65, 195104–195109.CrossRef Smith, D. R., Schultz, S., Markos, P., & Soukoulis, C. M. (2002). Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients. Physical Review B, 65, 195104–195109.CrossRef
14.
Zurück zum Zitat Chen, H., Zhang, J., Bai, Y., Luo, Y., Ran, L., Jiang, Q., et al. (2006). Experimental retrieval of the effective parameters of metamaterials based on a waveguide method. Optics Express, 14(26), 12944–12949.CrossRef Chen, H., Zhang, J., Bai, Y., Luo, Y., Ran, L., Jiang, Q., et al. (2006). Experimental retrieval of the effective parameters of metamaterials based on a waveguide method. Optics Express, 14(26), 12944–12949.CrossRef
15.
Zurück zum Zitat Saha, C., & Siddiqui, J. Y. (2011). Versatile CAD formulation for estimation of the resonant frequency and magnetic polarizability of circular split ring resonators. International Journal of RF and Microwave Computer-Aided Engineering, 21, 432–438.CrossRef Saha, C., & Siddiqui, J. Y. (2011). Versatile CAD formulation for estimation of the resonant frequency and magnetic polarizability of circular split ring resonators. International Journal of RF and Microwave Computer-Aided Engineering, 21, 432–438.CrossRef
16.
Zurück zum Zitat Rahimi, M., Zarrabi, F. B., Ahmadian, R., Mansouri, Z., & Keshtkar, A. (2014). Miniaturization of antenna for wireless application with difference metamaterial structures. Progress in Electromagnetics Research, 145, 19–29.CrossRef Rahimi, M., Zarrabi, F. B., Ahmadian, R., Mansouri, Z., & Keshtkar, A. (2014). Miniaturization of antenna for wireless application with difference metamaterial structures. Progress in Electromagnetics Research, 145, 19–29.CrossRef
17.
Zurück zum Zitat Saraswat, R., & Kumar, M. (2015). A frequency band reconfigurable UWB antenna for high gain applications. Progress in Electromagnetics Research B, 64, 29–45.CrossRef Saraswat, R., & Kumar, M. (2015). A frequency band reconfigurable UWB antenna for high gain applications. Progress in Electromagnetics Research B, 64, 29–45.CrossRef
18.
Zurück zum Zitat Xu, H. X., Wang, G. M., Lv, Y. Y., Qi, M. Q., Gao, X., & Ge, S. (2013). Multi frequency monopole antennas by loading metamaterial transmission lines with dual-shunt branch circuit. Progress in Electromagnetics Research, 137, 703–725.CrossRef Xu, H. X., Wang, G. M., Lv, Y. Y., Qi, M. Q., Gao, X., & Ge, S. (2013). Multi frequency monopole antennas by loading metamaterial transmission lines with dual-shunt branch circuit. Progress in Electromagnetics Research, 137, 703–725.CrossRef
19.
Zurück zum Zitat Samsuzzaman, M., Islam, T., Abd Rahman, N. H., Faruque, M. R. I., & Mandeep, J. S. (2014). Compact modified Swastika shape patch antenna for WLAN/WiMAX applications. International Journal of Antennas and Propagation, 2014, 1–8. Samsuzzaman, M., Islam, T., Abd Rahman, N. H., Faruque, M. R. I., & Mandeep, J. S. (2014). Compact modified Swastika shape patch antenna for WLAN/WiMAX applications. International Journal of Antennas and Propagation, 2014, 1–8.
20.
Zurück zum Zitat Cao, Y. F., Cheung, S. W., & Yuk, T. I. (2015). A multiband slot antenna for GPS/WiMAX/WLAN Systems. IEEE Transactions on Antennas and Propagation, 63(3), 952–958.MathSciNetCrossRef Cao, Y. F., Cheung, S. W., & Yuk, T. I. (2015). A multiband slot antenna for GPS/WiMAX/WLAN Systems. IEEE Transactions on Antennas and Propagation, 63(3), 952–958.MathSciNetCrossRef
21.
Zurück zum Zitat Ahsan, M d R, Islam, T., & Ullah, M d H. (2015). Computational and experimental analysis of high gain antenna for WLAN/WiMAX applications. Journal of Computational Electronics, 14(2), 634–641.CrossRef Ahsan, M d R, Islam, T., & Ullah, M d H. (2015). Computational and experimental analysis of high gain antenna for WLAN/WiMAX applications. Journal of Computational Electronics, 14(2), 634–641.CrossRef
22.
Zurück zum Zitat Alam, T., Samsuzzaman, M., Faruque, M., & Islam, M. T. (2016). A metamaterial unit cell inspired antenna for mobile wireless applications. Microwave and Optical Technology Letters, 58(2), 263–267.CrossRef Alam, T., Samsuzzaman, M., Faruque, M., & Islam, M. T. (2016). A metamaterial unit cell inspired antenna for mobile wireless applications. Microwave and Optical Technology Letters, 58(2), 263–267.CrossRef
23.
Zurück zum Zitat Rajabloo, H., Kooshki, V. A., & Oraizi, H. (2017). Compact microstrip fractal Koch slot antenna with ELC coupling load for triple band application. AEU-International Journal of Electronics and Communications, 73, 144–149.CrossRef Rajabloo, H., Kooshki, V. A., & Oraizi, H. (2017). Compact microstrip fractal Koch slot antenna with ELC coupling load for triple band application. AEU-International Journal of Electronics and Communications, 73, 144–149.CrossRef
24.
Zurück zum Zitat Vinodha, E., & Raghavan, S. (2017). Double stub microstrip fed two element rectangular dielectric resonator antenna for multiband operation. AEU-International Journal of Electronics and Communications, 78, 46–53.CrossRef Vinodha, E., & Raghavan, S. (2017). Double stub microstrip fed two element rectangular dielectric resonator antenna for multiband operation. AEU-International Journal of Electronics and Communications, 78, 46–53.CrossRef
25.
Zurück zum Zitat Varamini, G., Keshtkar, A., & Naser-Moghadasi, M. (2018). Compact and miniaturized microstrip antenna based on fractal and metamaterial loads with reconfigurable qualification. AEU-International Journal of Electronics and Communications, 83, 213–221.CrossRef Varamini, G., Keshtkar, A., & Naser-Moghadasi, M. (2018). Compact and miniaturized microstrip antenna based on fractal and metamaterial loads with reconfigurable qualification. AEU-International Journal of Electronics and Communications, 83, 213–221.CrossRef
26.
Zurück zum Zitat Jindal, S., Sivia, J. S., & Bindra, H. S. (2019). Hybrid fractal antenna using Meander and Minkowski curves for wireless applications. Wireless Personal Communications, 109(4), 1471–1490.CrossRef Jindal, S., Sivia, J. S., & Bindra, H. S. (2019). Hybrid fractal antenna using Meander and Minkowski curves for wireless applications. Wireless Personal Communications, 109(4), 1471–1490.CrossRef
27.
Zurück zum Zitat Kaur, M., & Sivia, J. S. (2019). Giuseppe Peano and Cantor set fractals based miniaturized hybrid fractal antenna for biomedical applications using artificial neural network and firefly algorithm. International Journal of RF and Microwave Computer-Aided Engineering, 30(1), 1–11. Kaur, M., & Sivia, J. S. (2019). Giuseppe Peano and Cantor set fractals based miniaturized hybrid fractal antenna for biomedical applications using artificial neural network and firefly algorithm. International Journal of RF and Microwave Computer-Aided Engineering, 30(1), 1–11.
28.
Zurück zum Zitat Kaur, M., & Sivia, J. S. (2019). Minkowski, Giuseppe Peano and Koch curves based design of compact hybrid fractal antenna for biomedical applications using ANN and PSO. AEU-International Journal of Electronics and Communications, 99, 14–24.CrossRef Kaur, M., & Sivia, J. S. (2019). Minkowski, Giuseppe Peano and Koch curves based design of compact hybrid fractal antenna for biomedical applications using ANN and PSO. AEU-International Journal of Electronics and Communications, 99, 14–24.CrossRef
29.
Zurück zum Zitat Langley, R. J., & Parker, E. A. (1982). Equivalent-circuit model for arrays of square loops. Electronics Letters, 18, 294–296.CrossRef Langley, R. J., & Parker, E. A. (1982). Equivalent-circuit model for arrays of square loops. Electronics Letters, 18, 294–296.CrossRef
30.
Zurück zum Zitat Chung, Y. C., Lee, K. W., Hong, I. P., Lee, M. G., Chun, H. J., & Yook, J. G. (2011). Simple prediction of FSS radome transmission characteristics using an FSS equivalent circuit model. IEICE Electron Express, 8(2), 89–95.CrossRef Chung, Y. C., Lee, K. W., Hong, I. P., Lee, M. G., Chun, H. J., & Yook, J. G. (2011). Simple prediction of FSS radome transmission characteristics using an FSS equivalent circuit model. IEICE Electron Express, 8(2), 89–95.CrossRef
31.
Zurück zum Zitat Kushwaha, N., Kumar, R., Ram Krishna, R. V. S., & Oli, T. (2014). Design and analysis of new compact UWB frequency selective surface and its equivalent circuit. Progress in Electromagnetics Research C, 46, 31–39.CrossRef Kushwaha, N., Kumar, R., Ram Krishna, R. V. S., & Oli, T. (2014). Design and analysis of new compact UWB frequency selective surface and its equivalent circuit. Progress in Electromagnetics Research C, 46, 31–39.CrossRef
Metadaten
Titel
A Quad Band Metamaterial Miniaturized Antenna for Wireless Applications with Gain Enhancement
Publikationsdatum
07.06.2020
Erschienen in
Wireless Personal Communications / Ausgabe 4/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07548-z

Weitere Artikel der Ausgabe 4/2020

Wireless Personal Communications 4/2020 Zur Ausgabe

Neuer Inhalt