Skip to main content
Erschienen in: Neural Computing and Applications 21/2021

29.06.2021 | Original Article

A reference spike train-based neurocomputing method for enhanced tactile discrimination of surface roughness

verfasst von: Longhui Qin, Yilei Zhang

Erschienen in: Neural Computing and Applications | Ausgabe 21/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spike trains (STs) induced by external stimuli are complex and challenging to decode the embedded spatiotemporal information. Although various methods have been developed to characterize STs, few applications have been reported in tactile discrimination applications. In this paper, a neurocomputing method based on reference spike train (RST) is proposed to establish a neural computation scheme, on which existing ST metrics could be fed into various traditional models directly. Moreover, existing metrics in the field of statistics and vector measurement are introduced together to extract more discriminative features. With the binning technique and feature selection algorithm applied, the neural computation scheme is aimed at taking advantage of as maximal as possible information contained in tactile signals. Based on our designed artificial fingertip, the effect is validated by improving the recognition accuracy from 77.6% to 83.4% when it is applied to the discrimination of eight roughness surfaces. Furthermore, properties of RST, such as spike intervals and distributions, are evaluated and it is found that RSTs with uniform distribution perform the best for tactile discrimination.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Johansson RS, Flanagan JR (2009) Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci 10(5):345CrossRef Johansson RS, Flanagan JR (2009) Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci 10(5):345CrossRef
2.
Zurück zum Zitat Libouton X, Barbier O, Berger Y, Plaghki L, Thonnard JL (2012) Tactile roughness discrimination of the finger pad relies primarily on vibration sensitive afferents not necessarily located in the hand. Behav Brain Res 229(1):273–279CrossRef Libouton X, Barbier O, Berger Y, Plaghki L, Thonnard JL (2012) Tactile roughness discrimination of the finger pad relies primarily on vibration sensitive afferents not necessarily located in the hand. Behav Brain Res 229(1):273–279CrossRef
3.
Zurück zum Zitat Vallbo A, Johansson RS et al (1984) Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum Neurobiol 3(1):3–14 Vallbo A, Johansson RS et al (1984) Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum Neurobiol 3(1):3–14
4.
Zurück zum Zitat Lesniak DR, Wellnitz SA, Gerling GJ, Lumpkin EA (2009) Statistical analysis and modeling of variance in the sa-i mechanoreceptor response to sustained indentation. In: Engineering in medicine and biology society, 2009. EMBC 2009. Annual international conference of the IEEE. IEEE, pp 6814–6817 Lesniak DR, Wellnitz SA, Gerling GJ, Lumpkin EA (2009) Statistical analysis and modeling of variance in the sa-i mechanoreceptor response to sustained indentation. In: Engineering in medicine and biology society, 2009. EMBC 2009. Annual international conference of the IEEE. IEEE, pp 6814–6817
5.
Zurück zum Zitat Tee BCK, Chortos A, Berndt A, Nguyen AK, Tom A, McGuire A, Lin ZC, Tien K, Bae WG, Wang H et al (2015) A skin-inspired organic digital mechanoreceptor. Science 350(6258):313–316CrossRef Tee BCK, Chortos A, Berndt A, Nguyen AK, Tom A, McGuire A, Lin ZC, Tien K, Bae WG, Wang H et al (2015) A skin-inspired organic digital mechanoreceptor. Science 350(6258):313–316CrossRef
6.
Zurück zum Zitat Kawasaki H, Komatsu T, Uchiyama K (2002) Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II. IEEE/ASME Trans Mechatron 7(3):296–303CrossRef Kawasaki H, Komatsu T, Uchiyama K (2002) Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II. IEEE/ASME Trans Mechatron 7(3):296–303CrossRef
7.
Zurück zum Zitat Chen H, Miao L, Su Z, Song Y, Han M, Chen X, Cheng X, Chen D, Zhang H (2017) Fingertip-inspired electronic skin based on triboelectric sliding sensing and porous piezoresistive pressure detection. Nano Energy 40:65–72CrossRef Chen H, Miao L, Su Z, Song Y, Han M, Chen X, Cheng X, Chen D, Zhang H (2017) Fingertip-inspired electronic skin based on triboelectric sliding sensing and porous piezoresistive pressure detection. Nano Energy 40:65–72CrossRef
8.
Zurück zum Zitat Hughes D, Correll N (2015) Texture recognition and localization in amorphous robotic skin. Bioinspiration Biomimetics 10(5):055002CrossRef Hughes D, Correll N (2015) Texture recognition and localization in amorphous robotic skin. Bioinspiration Biomimetics 10(5):055002CrossRef
9.
Zurück zum Zitat Wandersman E, Candelier R, Debrégeas G, Prevost A (2011) Texture-induced modulations of friction force: the fingerprint effect. Phys Rev Lett 107(6):164301CrossRef Wandersman E, Candelier R, Debrégeas G, Prevost A (2011) Texture-induced modulations of friction force: the fingerprint effect. Phys Rev Lett 107(6):164301CrossRef
10.
Zurück zum Zitat Scheibert J, Leurent S, Prevost A, Debrégeas G (2009) The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science 323(5920):1503–1506CrossRef Scheibert J, Leurent S, Prevost A, Debrégeas G (2009) The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science 323(5920):1503–1506CrossRef
11.
Zurück zum Zitat Liu Y, Bao R, Tao J, Li J, Dong M, Pan C (2020) Recent progress in tactile sensors and their applications in intelligent systems. Sci Bull 65(1):70–88CrossRef Liu Y, Bao R, Tao J, Li J, Dong M, Pan C (2020) Recent progress in tactile sensors and their applications in intelligent systems. Sci Bull 65(1):70–88CrossRef
12.
Zurück zum Zitat Chathuranga DS, Hirai S, et al. (2013) Investigation of a biomimetic fingertip’s ability to discriminate fabrics based on surface textures. In: 2013 IEEE/ASME international conference on advanced intelligent mechatronics. IEEE, pp 1667–1674 Chathuranga DS, Hirai S, et al. (2013) Investigation of a biomimetic fingertip’s ability to discriminate fabrics based on surface textures. In: 2013 IEEE/ASME international conference on advanced intelligent mechatronics. IEEE, pp 1667–1674
13.
Zurück zum Zitat Feng J, Jiang Q (2019) Slip and roughness detection of robotic fingertip based on FBG. Sens Actuat A 287:143–149CrossRef Feng J, Jiang Q (2019) Slip and roughness detection of robotic fingertip based on FBG. Sens Actuat A 287:143–149CrossRef
14.
Zurück zum Zitat Salehi S, Cabibihan JJ, Ge SS (2011) Artificial skin ridges enhance local tactile shape discrimination. Sensors 11(9):8626–8642CrossRef Salehi S, Cabibihan JJ, Ge SS (2011) Artificial skin ridges enhance local tactile shape discrimination. Sensors 11(9):8626–8642CrossRef
15.
Zurück zum Zitat Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. Computational neuroscience series. Massachusetts Institute of Technology Press Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. Computational neuroscience series. Massachusetts Institute of Technology Press
16.
Zurück zum Zitat Bassett DS, Khambhati AN, Grafton ST (2017) Emerging frontiers of neuroengineering: a network science of brain connectivity. Annu Rev Biomed Eng 19:327–352CrossRef Bassett DS, Khambhati AN, Grafton ST (2017) Emerging frontiers of neuroengineering: a network science of brain connectivity. Annu Rev Biomed Eng 19:327–352CrossRef
17.
Zurück zum Zitat Ghosh-Dastidar S, Adeli H (2009) Spiking neural networks. Int J Neural Syst 19(04):295–308CrossRef Ghosh-Dastidar S, Adeli H (2009) Spiking neural networks. Int J Neural Syst 19(04):295–308CrossRef
18.
Zurück zum Zitat Lin P, Chang S, Wang H, Huang Q, He J (2019) Spikecd: a parameter-insensitive spiking neural network with clustering degeneracy strategy. Neural Comput Appl 31(8):3933–3945CrossRef Lin P, Chang S, Wang H, Huang Q, He J (2019) Spikecd: a parameter-insensitive spiking neural network with clustering degeneracy strategy. Neural Comput Appl 31(8):3933–3945CrossRef
19.
Zurück zum Zitat Xie X, Wen S, Yan Z, Huang T, Chen Y (2020) Designing pulse-coupled neural networks with spike-synchronization-dependent plasticity rule: image segmentation and memristor circuit application. Neural Comput Appl 32(17):13441–13452CrossRef Xie X, Wen S, Yan Z, Huang T, Chen Y (2020) Designing pulse-coupled neural networks with spike-synchronization-dependent plasticity rule: image segmentation and memristor circuit application. Neural Comput Appl 32(17):13441–13452CrossRef
20.
Zurück zum Zitat Chen J, Li K, Rong H, Bilal K, Li K, Yu PS (2019) A periodicity-based parallel time series prediction algorithm in cloud computing environments. Inf Sci 496:506–537CrossRef Chen J, Li K, Rong H, Bilal K, Li K, Yu PS (2019) A periodicity-based parallel time series prediction algorithm in cloud computing environments. Inf Sci 496:506–537CrossRef
21.
Zurück zum Zitat Zhang L, Li K, Li C, Li K (2017) Bi-objective workflow scheduling of the energy consumption and reliability in heterogeneous computing systems. Inf Sci 379:241–256CrossRef Zhang L, Li K, Li C, Li K (2017) Bi-objective workflow scheduling of the energy consumption and reliability in heterogeneous computing systems. Inf Sci 379:241–256CrossRef
22.
Zurück zum Zitat Chicharro D, Kreuz T, Andrzejak RG (2011) What can spike train distances tell us about the neural code? J Neurosci Methods 199(1):146–165CrossRef Chicharro D, Kreuz T, Andrzejak RG (2011) What can spike train distances tell us about the neural code? J Neurosci Methods 199(1):146–165CrossRef
23.
Zurück zum Zitat Kreuz T, Chicharro D, Houghton C, Andrzejak RG, Mormann F (2012) Monitoring spike train synchrony. J Neurophysiol 109(5):1457–1472CrossRef Kreuz T, Chicharro D, Houghton C, Andrzejak RG, Mormann F (2012) Monitoring spike train synchrony. J Neurophysiol 109(5):1457–1472CrossRef
24.
Zurück zum Zitat Chen J, Yu P (2019) A domain adaptive density clustering algorithm for data with varying density distribution. IEEE Trans Knowl Data Eng 1–1 Chen J, Yu P (2019) A domain adaptive density clustering algorithm for data with varying density distribution. IEEE Trans Knowl Data Eng 1–1
25.
Zurück zum Zitat Kreuz T, Mulansky M, Bozanic N (2015) Spiky: a graphical user interface for monitoring spike train synchrony. J Neurophysiol 113(9):3432–3445CrossRef Kreuz T, Mulansky M, Bozanic N (2015) Spiky: a graphical user interface for monitoring spike train synchrony. J Neurophysiol 113(9):3432–3445CrossRef
26.
Zurück zum Zitat Rongala UB, Mazzoni A, Oddo CM (2017) Neuromorphic artificial touch for categorization of naturalistic textures. IEEE Trans Neural Network Learn Syst 28(4):819–829CrossRef Rongala UB, Mazzoni A, Oddo CM (2017) Neuromorphic artificial touch for categorization of naturalistic textures. IEEE Trans Neural Network Learn Syst 28(4):819–829CrossRef
27.
Zurück zum Zitat Zhengkun Y, Yilei Z (2017) Recognizing tactile surface roughness with a biomimetic fingertip: a soft neuromorphic approach. Neurocomputing 244:102–111CrossRef Zhengkun Y, Yilei Z (2017) Recognizing tactile surface roughness with a biomimetic fingertip: a soft neuromorphic approach. Neurocomputing 244:102–111CrossRef
28.
Zurück zum Zitat Bologna L, Pinoteau J, Passot J, Garrido J, Vogel J, Vidal ER, Arleo A (2013) A closed-loop neurobotic system for fine touch sensing. J Neural Eng 10(4):046019CrossRef Bologna L, Pinoteau J, Passot J, Garrido J, Vogel J, Vidal ER, Arleo A (2013) A closed-loop neurobotic system for fine touch sensing. J Neural Eng 10(4):046019CrossRef
29.
Zurück zum Zitat Oddo CM, Controzzi M, Beccai L, Cipriani C, Carrozza MC (2011) Roughness encoding for discrimination of surfaces in artificial active-touch. IEEE Trans Rob 27(3):522–533CrossRef Oddo CM, Controzzi M, Beccai L, Cipriani C, Carrozza MC (2011) Roughness encoding for discrimination of surfaces in artificial active-touch. IEEE Trans Rob 27(3):522–533CrossRef
30.
Zurück zum Zitat Song A, Han Y, Hu H, Li J (2014) A novel texture sensor for fabric texture measurement and classification. IEEE Trans Instrum Meas 63(7):1739–1747CrossRef Song A, Han Y, Hu H, Li J (2014) A novel texture sensor for fabric texture measurement and classification. IEEE Trans Instrum Meas 63(7):1739–1747CrossRef
31.
Zurück zum Zitat Nakamoto H, Matsumoto T (2016) Tactile texture classification using magnetic tactile sensor. Int J Appl Electromagnet Mech 52(3–4):1673–1679CrossRef Nakamoto H, Matsumoto T (2016) Tactile texture classification using magnetic tactile sensor. Int J Appl Electromagnet Mech 52(3–4):1673–1679CrossRef
32.
Zurück zum Zitat Jamali N, Sammut C (2011) Majority voting: material classification by tactile sensing using surface texture. IEEE Trans Rob 27(3):508–521CrossRef Jamali N, Sammut C (2011) Majority voting: material classification by tactile sensing using surface texture. IEEE Trans Rob 27(3):508–521CrossRef
33.
Zurück zum Zitat Qin L, Yi Z, Zhang Y (2017) Enhanced surface roughness discrimination with optimized features from bio-inspired tactile sensor. Sens Actuat A 264:133–140CrossRef Qin L, Yi Z, Zhang Y (2017) Enhanced surface roughness discrimination with optimized features from bio-inspired tactile sensor. Sens Actuat A 264:133–140CrossRef
34.
Zurück zum Zitat Nazari S, Faez K, Amiri M, Karami E (2015) A digital implementation of neuron-astrocyte interaction for neuromorphic applications. Neural Netw 66:79–90CrossRef Nazari S, Faez K, Amiri M, Karami E (2015) A digital implementation of neuron-astrocyte interaction for neuromorphic applications. Neural Netw 66:79–90CrossRef
35.
Zurück zum Zitat Walter F, Röhrbein F, Knoll A (2015) Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks. Neural Netw 72:152–167CrossRef Walter F, Röhrbein F, Knoll A (2015) Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks. Neural Netw 72:152–167CrossRef
36.
Zurück zum Zitat Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544CrossRef Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544CrossRef
37.
Zurück zum Zitat Stein RB (1967) Some models of neuronal variability. Biophys J 7(1):37–68CrossRef Stein RB (1967) Some models of neuronal variability. Biophys J 7(1):37–68CrossRef
39.
Zurück zum Zitat Eliasmith C, Anderson CH (2004) Neural engineering: computation, representation, and dynamics in neurobiological systems. MIT Press, Cambridge Eliasmith C, Anderson CH (2004) Neural engineering: computation, representation, and dynamics in neurobiological systems. MIT Press, Cambridge
40.
Zurück zum Zitat Lee WW, Yu H, Thakor NV (2014) Gait event detection through neuromorphic spike sequence learning. In: 2014 5th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics. IEEE, pp 899–904 Lee WW, Yu H, Thakor NV (2014) Gait event detection through neuromorphic spike sequence learning. In: 2014 5th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics. IEEE, pp 899–904
41.
Zurück zum Zitat Friedl KE, Voelker AR, Peer A, Eliasmith C (2016) Human-inspired neurorobotic system for classifying surface textures by touch. IEEE Robot Autom Lett 1(1):516–523CrossRef Friedl KE, Voelker AR, Peer A, Eliasmith C (2016) Human-inspired neurorobotic system for classifying surface textures by touch. IEEE Robot Autom Lett 1(1):516–523CrossRef
42.
Zurück zum Zitat Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A, Goodman PH, Harris FC et al (2007) Simulation of networks of spiking neurons: a review of tools and strategies. J Comput Neurosci 23(3):349–398MathSciNetCrossRef Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A, Goodman PH, Harris FC et al (2007) Simulation of networks of spiking neurons: a review of tools and strategies. J Comput Neurosci 23(3):349–398MathSciNetCrossRef
43.
Zurück zum Zitat Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15(5):1063–1070CrossRef Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15(5):1063–1070CrossRef
44.
Zurück zum Zitat Misra J, Saha I (2010) Artificial neural networks in hardware: a survey of two decades of progress. Neurocomputing 74(1–3):239–255CrossRef Misra J, Saha I (2010) Artificial neural networks in hardware: a survey of two decades of progress. Neurocomputing 74(1–3):239–255CrossRef
45.
Zurück zum Zitat Barron-Zambrano JH, Torres-Huitzil C (2013) Fpga implementation of a configurable neuromorphic cpg-based locomotion controller. Neural Netw 45:50–61CrossRef Barron-Zambrano JH, Torres-Huitzil C (2013) Fpga implementation of a configurable neuromorphic cpg-based locomotion controller. Neural Netw 45:50–61CrossRef
46.
Zurück zum Zitat Cunningham JP, Gilja V, Ryu SI, Shenoy KV (2009) Methods for estimating neural firing rates, and their application to brain–machine interfaces. Neural Netw 22(9):1235–1246CrossRef Cunningham JP, Gilja V, Ryu SI, Shenoy KV (2009) Methods for estimating neural firing rates, and their application to brain–machine interfaces. Neural Netw 22(9):1235–1246CrossRef
47.
Zurück zum Zitat Ostojic S (2011) Interspike interval distributions of spiking neurons driven by fluctuating inputs. J Neurophysiol 106(1):361–373MathSciNetCrossRef Ostojic S (2011) Interspike interval distributions of spiking neurons driven by fluctuating inputs. J Neurophysiol 106(1):361–373MathSciNetCrossRef
48.
Zurück zum Zitat Lestienne R (2001) Spike timing, synchronization and information processing on the sensory side of the central nervous system. Prog Neurobiol 65(6):545–591CrossRef Lestienne R (2001) Spike timing, synchronization and information processing on the sensory side of the central nervous system. Prog Neurobiol 65(6):545–591CrossRef
49.
Zurück zum Zitat Johansson RS, Birznieks I (2004) First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nat Neurosci 7(2):170CrossRef Johansson RS, Birznieks I (2004) First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nat Neurosci 7(2):170CrossRef
50.
Zurück zum Zitat Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1–2):273–324MATHCrossRef Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1–2):273–324MATHCrossRef
51.
Zurück zum Zitat Ringnér M (2008) What is principal component analysis? Nat Biotechnol 26(3):303CrossRef Ringnér M (2008) What is principal component analysis? Nat Biotechnol 26(3):303CrossRef
52.
Zurück zum Zitat Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13(4–5):411–430CrossRef Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13(4–5):411–430CrossRef
53.
Zurück zum Zitat Deza MM, Deza E (2009) Encyclopedia of distances. In: Encyclopedia of distances. Springer Deza MM, Deza E (2009) Encyclopedia of distances. In: Encyclopedia of distances. Springer
54.
Zurück zum Zitat Kreuz T, Haas JS, Morelli A, Abarbanel HD, Politi A (2007) Measuring spike train synchrony. J Neurosci Methods 165(1):151–161CrossRef Kreuz T, Haas JS, Morelli A, Abarbanel HD, Politi A (2007) Measuring spike train synchrony. J Neurosci Methods 165(1):151–161CrossRef
55.
Zurück zum Zitat Kreuz T, Chicharro D, Greschner M, Andrzejak RG (2011) Time-resolved and time-scale adaptive measures of spike train synchrony. J Neurosci Methods 195(1):92–106CrossRef Kreuz T, Chicharro D, Greschner M, Andrzejak RG (2011) Time-resolved and time-scale adaptive measures of spike train synchrony. J Neurosci Methods 195(1):92–106CrossRef
56.
Zurück zum Zitat Quiroga RQ, Kreuz T, Grassberger P (2002) Event synchronization: a simple and fast method to measure synchronicity and time delay patterns. Phys Rev E 66(4):041904MathSciNetCrossRef Quiroga RQ, Kreuz T, Grassberger P (2002) Event synchronization: a simple and fast method to measure synchronicity and time delay patterns. Phys Rev E 66(4):041904MathSciNetCrossRef
58.
Zurück zum Zitat Victor JD, Purpura KP (1996) Nature and precision of temporal coding in visual cortex: a metric-space analysis. J Neurophysiol 76(2):1310–1326CrossRef Victor JD, Purpura KP (1996) Nature and precision of temporal coding in visual cortex: a metric-space analysis. J Neurophysiol 76(2):1310–1326CrossRef
59.
Zurück zum Zitat Yi Z, Zhang Y, Peters J (2017) Bioinspired tactile sensor for surface roughness discrimination. Sens Actuat A 255:46–53CrossRef Yi Z, Zhang Y, Peters J (2017) Bioinspired tactile sensor for surface roughness discrimination. Sens Actuat A 255:46–53CrossRef
60.
Zurück zum Zitat Qin L, Zhang Y (2018) Roughness discrimination with bio-inspired tactile sensor manually sliding on polished surfaces. Sens Actuat A 279:433–441CrossRef Qin L, Zhang Y (2018) Roughness discrimination with bio-inspired tactile sensor manually sliding on polished surfaces. Sens Actuat A 279:433–441CrossRef
Metadaten
Titel
A reference spike train-based neurocomputing method for enhanced tactile discrimination of surface roughness
verfasst von
Longhui Qin
Yilei Zhang
Publikationsdatum
29.06.2021
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 21/2021
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-021-06119-y

Weitere Artikel der Ausgabe 21/2021

Neural Computing and Applications 21/2021 Zur Ausgabe

Premium Partner