Skip to main content
Erschienen in: Wireless Personal Communications 2/2016

01.01.2016

A Reinforcement-Learning Based Cognitive Scheme for Opportunistic Spectrum Access

verfasst von: Angeliki V. Kordali, Panayotis G. Cottis

Erschienen in: Wireless Personal Communications | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cognitive Radio enables secondary users (SUs) to access communication channels allocated to primary users (PUs). As prior knowledge of the channel characteristics is not available in practice, the SUs attempting to get communication access in a geographical area must act autonomously and fast in order to detect vacant communication channels. Addressing the SUs need for autonomous operation, this article proposes a reinforcement learning scheme that determines the sensing order of the available channels employing two alternative update rules. Under both alternative options, the SUs operate as independent agents processing information acquired solely from their own sensing mechanisms in order to assess the channels with respect to (i) the occupancy probability and (ii) the mean duration of vacant periods. The scheme capability of accurately estimating the various channel characteristics without any prior knowledge of the traffic pattern followed by the PUs is thoroughly investigated with regard to critical performance metrics in both static and dynamic transmission environments. The proposed scheme is compared with two existing channel selection schemes. The simulations show that the proposed scheme manages to prioritize channel selection according to the channel characteristics and that it outperforms both schemes under comparison in terms of channel utilization and energy efficiency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRef Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRef
2.
Zurück zum Zitat Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks Journal, 50(13), 2127–2159.CrossRefMATH Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks Journal, 50(13), 2127–2159.CrossRefMATH
3.
Zurück zum Zitat Ycek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys and Tutorials, 11(1), 116–130.CrossRef Ycek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys and Tutorials, 11(1), 116–130.CrossRef
4.
Zurück zum Zitat Ghasemi, A., & Sousa, E. S. (2008). Spectrum sensing in cognitive radio networks: Requirements, challenges and design trade-offs. IEEE Communications Magazine, 46(4), 32–39.CrossRef Ghasemi, A., & Sousa, E. S. (2008). Spectrum sensing in cognitive radio networks: Requirements, challenges and design trade-offs. IEEE Communications Magazine, 46(4), 32–39.CrossRef
5.
Zurück zum Zitat Tragos, E. Z., Zeadally, S., Fragkiadakis, A. G., & Siris, V. A. (2013). Spectrum assignment on cognitive radio networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 15(3). Tragos, E. Z., Zeadally, S., Fragkiadakis, A. G., & Siris, V. A. (2013). Spectrum assignment on cognitive radio networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 15(3).
6.
Zurück zum Zitat Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 25, 201–220.CrossRef Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 25, 201–220.CrossRef
7.
Zurück zum Zitat Geirhofer, S., Tong, L., & Sandler, M. (2007). Dynamic spectrum access in the time domain: Modeling and exploiting white space. IEEE Communications Magazine, 45(5), 66–72.CrossRef Geirhofer, S., Tong, L., & Sandler, M. (2007). Dynamic spectrum access in the time domain: Modeling and exploiting white space. IEEE Communications Magazine, 45(5), 66–72.CrossRef
8.
Zurück zum Zitat Xiukui, Li, & Reza Zekavat, Seyed A. (2009). Cognitive radio based spectrum sharing: Evaluating channel availability via traffic pattern prediction. Journal of Communications and Networks, 11(2), 104–114.CrossRef Xiukui, Li, & Reza Zekavat, Seyed A. (2009). Cognitive radio based spectrum sharing: Evaluating channel availability via traffic pattern prediction. Journal of Communications and Networks, 11(2), 104–114.CrossRef
9.
Zurück zum Zitat Canberk, B., Akyildiz, I. F., & Oktug, S. (2000). Primary user activity modeling using first-difference filter clustering and correlation in cognitive radio networks. IEEE/ACM Transactions on Networking, 19(1). Canberk, B., Akyildiz, I. F., & Oktug, S. (2000). Primary user activity modeling using first-difference filter clustering and correlation in cognitive radio networks. IEEE/ACM Transactions on Networking, 19(1).
10.
Zurück zum Zitat Yun, G., Grammenos, R. C., Yang, Y., & Wang, W. (2010). Performance analysis of selective opportunistic spectrum access with traffic prediction. IEEE Transactions on Vehicular Technology, 59(4). Yun, G., Grammenos, R. C., Yang, Y., & Wang, W. (2010). Performance analysis of selective opportunistic spectrum access with traffic prediction. IEEE Transactions on Vehicular Technology, 59(4).
11.
Zurück zum Zitat Huang, J., Zhou, H., Chen, Y., Chen, B., Zhu, X., & Kong, R. (2013). Optimal channel sensing order for various applications in cognitive radio networks. Wireless Personal Communications, 71(3), 1721–1740.CrossRef Huang, J., Zhou, H., Chen, Y., Chen, B., Zhu, X., & Kong, R. (2013). Optimal channel sensing order for various applications in cognitive radio networks. Wireless Personal Communications, 71(3), 1721–1740.CrossRef
12.
Zurück zum Zitat Jiang, H., Lai, L., Fan, R., & Poor, H. V. (2009). Optimal selection of channel sensing order in cognitive radio. IEEE Transactions on Wireless Communications, 8(1), 297–307.CrossRef Jiang, H., Lai, L., Fan, R., & Poor, H. V. (2009). Optimal selection of channel sensing order in cognitive radio. IEEE Transactions on Wireless Communications, 8(1), 297–307.CrossRef
13.
Zurück zum Zitat Chang, N. B., & Liu, M. (2009). Optimal channel probing and transmission scheduling for opportunistic spectrum access. IEEE/ACM Transactions on Networking, 17(6), 1805–1818.CrossRef Chang, N. B., & Liu, M. (2009). Optimal channel probing and transmission scheduling for opportunistic spectrum access. IEEE/ACM Transactions on Networking, 17(6), 1805–1818.CrossRef
14.
Zurück zum Zitat Cheng, H. T., & Zhuang, W. (2011). Simple channel sensing order in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 29(4), 676–688.CrossRef Cheng, H. T., & Zhuang, W. (2011). Simple channel sensing order in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 29(4), 676–688.CrossRef
15.
Zurück zum Zitat Liu, C.-H., Tran, J. A., Pawelczak, P., & Cabric, D. (2013). Traffic-aware channel sensing order in dynamic spectrum access networks. IEEE Journal on Selected Areas in Communications, 31(11), 2312–2323.CrossRef Liu, C.-H., Tran, J. A., Pawelczak, P., & Cabric, D. (2013). Traffic-aware channel sensing order in dynamic spectrum access networks. IEEE Journal on Selected Areas in Communications, 31(11), 2312–2323.CrossRef
16.
Zurück zum Zitat Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning. Cambridge, MA: MIT Press. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning. Cambridge, MA: MIT Press.
17.
Zurück zum Zitat Watkins, C. J. C. H., & Dayan, P. (1992). Technical note: Q-learning. Machine Learning, 8(3/4), 279–292.CrossRefMATH Watkins, C. J. C. H., & Dayan, P. (1992). Technical note: Q-learning. Machine Learning, 8(3/4), 279–292.CrossRefMATH
18.
Zurück zum Zitat Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4, 237–285. Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4, 237–285.
19.
Zurück zum Zitat Singh, S., Jaakkola, T., Littman, M. L., & Szepesvri, C. (2000). Convergence results for single-step on-policy reinforcement-learning algorithms. Machine Learning, 38, 287–308.CrossRefMATH Singh, S., Jaakkola, T., Littman, M. L., & Szepesvri, C. (2000). Convergence results for single-step on-policy reinforcement-learning algorithms. Machine Learning, 38, 287–308.CrossRefMATH
20.
Zurück zum Zitat Liang, Y. C., Zeng, Y., Peh, E. C., & Hoang, A. T. (2008). Sensing throughput tradeoff in cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.CrossRef Liang, Y. C., Zeng, Y., Peh, E. C., & Hoang, A. T. (2008). Sensing throughput tradeoff in cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.CrossRef
Metadaten
Titel
A Reinforcement-Learning Based Cognitive Scheme for Opportunistic Spectrum Access
verfasst von
Angeliki V. Kordali
Panayotis G. Cottis
Publikationsdatum
01.01.2016
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2016
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-015-2955-4

Weitere Artikel der Ausgabe 2/2016

Wireless Personal Communications 2/2016 Zur Ausgabe