Skip to main content
Erschienen in: Wireless Personal Communications 3/2022

27.01.2022

A Reliable GSHH-DL Routing Protocol for Monitoring the Thermohaline Environment Condition

verfasst von: N. Hemavathy, K. Ramesh, P. Indumathi

Erschienen in: Wireless Personal Communications | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In underwater acoustic sensor networks (UASN), the main challenging issues are bandwidth, higher propagation delay, and heavy packet loss during data transmission. The existing UASN routing algorithms have larger latency in the network link and a high rate of packet loss because of the salinity and temperature in the water at different depths. In this nominal, an innovative method called Gravitational Search Hybrid Hexagon-Deep Learning algorithm is proposed. By combining Deep Learning and Gravitation Search, the optimized weighting factor is determined after that which is given to ANN to classify the relay nodes. The weighting value of the classifier is calculated by the GS algorithm to get an accurate reliable relay node status. The classified data has the details about the relay node status in the network which attains whether the relay node is in good status or worst status. These relay node statuses has given to the Hybrid Hexagon scheme to identify the best relay path, by comparing the primary relay node value with one standard value. If the present value is greater than the primary value, then it chooses that value among all neighbour relay node data. Hence the way, the relay node routing is accomplished, if there is any worst stage relay present in the relay path, it can suddenly change the relay path without wasting the time to lose the packet. The routing protocol has been implemented in the ns2-AqaSim simulator and testbed for measurement of the performance metrics of the UASN. The simulation result showed that there is a 45% improvement in throughput, 37% in delay, 47.45% in network lifetime and 48% in packet delivery ratio using the proposed method. It is concluded that the proposed method effectively routing the data packet among the Underwater Acoustic network (UWAN) and successfully improve the network capability with worthy overhead.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chen, Y., Jin, X., Wan, L., Zhang, X., & Xu, X. (2021). Selective dynamic coded cooperative communications for multi-hop underwater acoustic sensor networks. IEEE Access, 7, 70552–70563.CrossRef Chen, Y., Jin, X., Wan, L., Zhang, X., & Xu, X. (2021). Selective dynamic coded cooperative communications for multi-hop underwater acoustic sensor networks. IEEE Access, 7, 70552–70563.CrossRef
2.
Zurück zum Zitat Ullah, I., Chen, J., Su, X., Esposito, C., & Choi, C. (2019). Localization and detection of targets in underwater wireless sensor using distance and angle based algorithms. IEEE Access, 7, 45693–45704.CrossRef Ullah, I., Chen, J., Su, X., Esposito, C., & Choi, C. (2019). Localization and detection of targets in underwater wireless sensor using distance and angle based algorithms. IEEE Access, 7, 45693–45704.CrossRef
3.
Zurück zum Zitat Zeng, R., & Wang, Y. (2018). Orthogonal angle domain subspace projection-based receiver algorithm for underwater acoustic communication. IEEE Communications Letters, 22(5), 1102–1105.CrossRef Zeng, R., & Wang, Y. (2018). Orthogonal angle domain subspace projection-based receiver algorithm for underwater acoustic communication. IEEE Communications Letters, 22(5), 1102–1105.CrossRef
4.
Zurück zum Zitat Toso, G., Masiero, R., Casari, P., Komar, M., Kebkal, O., & Zorzi, M. (2017). Revisiting source routing for underwater networking: The sun protocol. IEEE Access, 6(1), 1525–1541. Toso, G., Masiero, R., Casari, P., Komar, M., Kebkal, O., & Zorzi, M. (2017). Revisiting source routing for underwater networking: The sun protocol. IEEE Access, 6(1), 1525–1541.
5.
Zurück zum Zitat Han, X., Yin, J. W., Liu, B., & Guo, L. X. (2020). MIMO underwater acoustic communication in shallow water with ice cover. China Ocean Engineering, 33(2), 237–244.CrossRef Han, X., Yin, J. W., Liu, B., & Guo, L. X. (2020). MIMO underwater acoustic communication in shallow water with ice cover. China Ocean Engineering, 33(2), 237–244.CrossRef
6.
Zurück zum Zitat Yin, J., Ge, W., Han, X., Liu, B., & Guo, L. (2019). Partial FFT demodulation with IRC in MIMO-SC-FDE communication over doppler distorted underwater acoustic channels. IEEE Communications Letters, 23(11), 2086–2090.CrossRef Yin, J., Ge, W., Han, X., Liu, B., & Guo, L. (2019). Partial FFT demodulation with IRC in MIMO-SC-FDE communication over doppler distorted underwater acoustic channels. IEEE Communications Letters, 23(11), 2086–2090.CrossRef
7.
Zurück zum Zitat Ma, L., Zhou, S., Qiao, G., Liu, S., & Zhou, F. (2016). Superposition coding for downlink underwater acoustic OFDM. IEEE Journal of Oceanic Engineering, 42(1), 175–187. Ma, L., Zhou, S., Qiao, G., Liu, S., & Zhou, F. (2016). Superposition coding for downlink underwater acoustic OFDM. IEEE Journal of Oceanic Engineering, 42(1), 175–187.
8.
Zurück zum Zitat Chen, Y., Jin, X., Wan, L., Zhang, X., & Xu, X. (2019). Selective dynamic coded cooperative communications for multi-hop underwater acoustic sensor networks. IEEE Access, 7, 70552–70563.CrossRef Chen, Y., Jin, X., Wan, L., Zhang, X., & Xu, X. (2019). Selective dynamic coded cooperative communications for multi-hop underwater acoustic sensor networks. IEEE Access, 7, 70552–70563.CrossRef
9.
Zurück zum Zitat Ahmad, A. M., Barbeau, M., Garcia-Alfaro, J., Kassem, J., & Kranakis, E. (2018). Tuning the demodulation frequency based on a normalized trajectory model for mobile underwater acoustic communications. Emerging Telecommunication Technologies., 30(12), 1–15. Ahmad, A. M., Barbeau, M., Garcia-Alfaro, J., Kassem, J., & Kranakis, E. (2018). Tuning the demodulation frequency based on a normalized trajectory model for mobile underwater acoustic communications. Emerging Telecommunication Technologies., 30(12), 1–15.
10.
Zurück zum Zitat Tran-Dang, H., & Kim, D.-S. (2019). Efficient bandwidth-aware routing for underwater cognitive acoustic sensor networks. IET Wireless Sensor Systems, 9(2), 77–84.CrossRef Tran-Dang, H., & Kim, D.-S. (2019). Efficient bandwidth-aware routing for underwater cognitive acoustic sensor networks. IET Wireless Sensor Systems, 9(2), 77–84.CrossRef
11.
Zurück zum Zitat Lee, Y. M. (2017). Classification of node degree based on deep learning and routing method applied for virtual route assignment. Ad Hoc Networks, 58(4), 70–85.CrossRef Lee, Y. M. (2017). Classification of node degree based on deep learning and routing method applied for virtual route assignment. Ad Hoc Networks, 58(4), 70–85.CrossRef
12.
Zurück zum Zitat Zhou, Z., Yao, B., Xing, R., Shu, L., & Bu, S. (2016). E-CARP: An energy efficient routing protocol for uwsns on the internet of underwater things. IEEE Sensors Journal, 16(11), 4072–4082.CrossRef Zhou, Z., Yao, B., Xing, R., Shu, L., & Bu, S. (2016). E-CARP: An energy efficient routing protocol for uwsns on the internet of underwater things. IEEE Sensors Journal, 16(11), 4072–4082.CrossRef
13.
Zurück zum Zitat Diamant, R., Casari, P., Campagnaro, F., Kebkal, O., Kebkal, V., & Zorzi, M. (2018). Fair and throughput-optimal routing in multimodal underwater networks. IEEE Transactions on Wireless Communications, 17(3), 1738–1754.CrossRef Diamant, R., Casari, P., Campagnaro, F., Kebkal, O., Kebkal, V., & Zorzi, M. (2018). Fair and throughput-optimal routing in multimodal underwater networks. IEEE Transactions on Wireless Communications, 17(3), 1738–1754.CrossRef
14.
Zurück zum Zitat Rahman, M. A., Lee, Y., & Koo, I. (2017). EECOR: an energy-efficient cooperative opportunistic routing protocol for underwater acoustic sensor networks. IEEE Access, 5(2), 14119–14132.CrossRef Rahman, M. A., Lee, Y., & Koo, I. (2017). EECOR: an energy-efficient cooperative opportunistic routing protocol for underwater acoustic sensor networks. IEEE Access, 5(2), 14119–14132.CrossRef
15.
Zurück zum Zitat Zhang, C., Wang, X., Li, F., He, Q., & Huang, M. (2017). Deep learning-based network application classification for SDN. Transactions on Emerging Telecommunications Technologies, 29(4), 1–18. Zhang, C., Wang, X., Li, F., He, Q., & Huang, M. (2017). Deep learning-based network application classification for SDN. Transactions on Emerging Telecommunications Technologies, 29(4), 1–18.
16.
Zurück zum Zitat Zeng, Z., Fu, S., Zhang, H., Dong, Y., & Cheng, J. (2017). A survey of underwater optical wireless communications. IEEE Communications Surveys and Tutorials, 19(1), 204–238.CrossRef Zeng, Z., Fu, S., Zhang, H., Dong, Y., & Cheng, J. (2017). A survey of underwater optical wireless communications. IEEE Communications Surveys and Tutorials, 19(1), 204–238.CrossRef
17.
Zurück zum Zitat Diamant, R., Lampe, L., & Gamroth, E. (2017). Bounds for low probability of detection for underwater acoustic communication. IEEE Journal of OE, 42(1), 143–155. Diamant, R., Lampe, L., & Gamroth, E. (2017). Bounds for low probability of detection for underwater acoustic communication. IEEE Journal of OE, 42(1), 143–155.
18.
Zurück zum Zitat Xing, G., Chen, Y., He, L., Su, W., Hou, R., Li, W., Zhang, C., & Chen, X. (2019). Energy consumption in relay underwater acoustic sensor networks for NDN. IEEE Access, 7(5), 42694–42702.CrossRef Xing, G., Chen, Y., He, L., Su, W., Hou, R., Li, W., Zhang, C., & Chen, X. (2019). Energy consumption in relay underwater acoustic sensor networks for NDN. IEEE Access, 7(5), 42694–42702.CrossRef
19.
Zurück zum Zitat Zhang, X., Huang, J., Wang, G., & Li, L. (2019). Hypersonic target tracking with high dynamic biases. IEEE Transactions on Aerospace and Electronic Systems, 55(1), 506–510.CrossRef Zhang, X., Huang, J., Wang, G., & Li, L. (2019). Hypersonic target tracking with high dynamic biases. IEEE Transactions on Aerospace and Electronic Systems, 55(1), 506–510.CrossRef
20.
Zurück zum Zitat Khan, A., Ali, I., Rahman, A. U., Imran, M., & Mahmood, H. (2018). Co-EEORS: Cooperative energy efficient optimal relay selection protocol for underwater wireless sensor networks. IEEE Access, 99(1), 1–15. Khan, A., Ali, I., Rahman, A. U., Imran, M., & Mahmood, H. (2018). Co-EEORS: Cooperative energy efficient optimal relay selection protocol for underwater wireless sensor networks. IEEE Access, 99(1), 1–15.
Metadaten
Titel
A Reliable GSHH-DL Routing Protocol for Monitoring the Thermohaline Environment Condition
verfasst von
N. Hemavathy
K. Ramesh
P. Indumathi
Publikationsdatum
27.01.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09478-4

Weitere Artikel der Ausgabe 3/2022

Wireless Personal Communications 3/2022 Zur Ausgabe

Neuer Inhalt