Skip to main content
Erschienen in: Wireless Personal Communications 3/2022

01.12.2021

UAV Placement and Trajectory Design Optimization: A Survey

verfasst von: Ahmad Mazaherifar, Seyedakbar Mostafavi

Erschienen in: Wireless Personal Communications | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Unmanned Aerial Vehicles (UAVs) have recently attracted attention in military areas as well as a wide range of commercial and civilian applications. With UAVs equipped with advanced transmitters and sensors, and with high mobility and flexibility in deployment, they have gained a special place in the field of information technology. Since there are several types of UAVs available, depending on circumstances choosing an appropriate one is essential for proper use of them. In this paper, we review some types of UAVs and a variety of UAV-enabled wireless networks with a focus on optimizing UAV position and flight paths. Since using UAVs is considered as one important complement for future cellular networks like 5G and Beyond 5G networks in disasters we focus on UAV placement optimization in cellular networks and then, we investigate the optimal UAV location for various scenarios and applications, and introduce methods of UAVs placement and trajectory design optimization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rumba, R., & Nikitenko, A., (2020). The wild west of drones: A review on autonomous- UAV traffic-management. In: 2020 International Conference on Unmanned Aircraft Systems (ICUAS). Rumba, R., & Nikitenko, A., (2020). The wild west of drones: A review on autonomous- UAV traffic-management. In: 2020 International Conference on Unmanned Aircraft Systems (ICUAS).
2.
Zurück zum Zitat Panagiotou, P., Mitridis, D., Dimopoulos, T., Kapsalis, S., S. Dimitriou, S., & Yakinthos, K. (2020). Aerodynamic design of a tactical Blended-Wing-Body UAV for the aerial delivery of cargo and lifesaving supplies. In: AIAA Scitech 2020 Forum. Panagiotou, P., Mitridis, D., Dimopoulos, T., Kapsalis, S., S. Dimitriou, S., & Yakinthos, K. (2020). Aerodynamic design of a tactical Blended-Wing-Body UAV for the aerial delivery of cargo and lifesaving supplies. In: AIAA Scitech 2020 Forum.
3.
Zurück zum Zitat Birk, A., Wiggerich, B., Bülow, H., Pfingsthorn, M., & Schwertfeger, S. (2011). Safety, security, and rescue missions with an unmanned aerial vehicle (UAV). Journal of Intelligent and Robotic Systems, 64(1), 57–76.CrossRef Birk, A., Wiggerich, B., Bülow, H., Pfingsthorn, M., & Schwertfeger, S. (2011). Safety, security, and rescue missions with an unmanned aerial vehicle (UAV). Journal of Intelligent and Robotic Systems, 64(1), 57–76.CrossRef
4.
Zurück zum Zitat Jeong, E., Seo, J., & Wacker, J. (2020). Literature review and technical survey on bridge inspection using unmanned aerial vehicles. Journal of Performance of Constructed Facilities, 34(6), 4020113.CrossRef Jeong, E., Seo, J., & Wacker, J. (2020). Literature review and technical survey on bridge inspection using unmanned aerial vehicles. Journal of Performance of Constructed Facilities, 34(6), 4020113.CrossRef
5.
Zurück zum Zitat Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., Othman, N. S., Khreishah, A., & Guizani, M. (2019). Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. IEEE Access, 7, 48572–48634.CrossRef Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., Othman, N. S., Khreishah, A., & Guizani, M. (2019). Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. IEEE Access, 7, 48572–48634.CrossRef
6.
Zurück zum Zitat Półka, M., Ptak, S., & Kuziora, Ł. (2017). The use of UAV’s for search and rescue operations. Procedia Engineering, 192, 748–752.CrossRef Półka, M., Ptak, S., & Kuziora, Ł. (2017). The use of UAV’s for search and rescue operations. Procedia Engineering, 192, 748–752.CrossRef
7.
Zurück zum Zitat Kanistras, K., Martins, G., Rutherford, M. J., & Valavanis, K. P. (2013). A survey of unmanned aerial vehicles (UAVs) for traffic monitoring. In: 2013 International Conference on Unmanned Aircraft Systems (ICUAS). Kanistras, K., Martins, G., Rutherford, M. J., & Valavanis, K. P. (2013). A survey of unmanned aerial vehicles (UAVs) for traffic monitoring. In: 2013 International Conference on Unmanned Aircraft Systems (ICUAS).
8.
Zurück zum Zitat Mukherjee, A., Misra, S., & Raghuwanshi, N. S. (2019). A survey of unmanned aerial sensing solutions in precision agriculture. Journal of Network and Computer Applications, 148, 102461.CrossRef Mukherjee, A., Misra, S., & Raghuwanshi, N. S. (2019). A survey of unmanned aerial sensing solutions in precision agriculture. Journal of Network and Computer Applications, 148, 102461.CrossRef
9.
Zurück zum Zitat Dilshad, N., Hwang, J., J. Song, J., & N. Sung, N. (2020). Applications and challenges in video surveillance via drone: A brief survey. In: 2020 International Conference on Information and Communication Technology Convergence (ICTC). Dilshad, N., Hwang, J., J. Song, J., & N. Sung, N. (2020). Applications and challenges in video surveillance via drone: A brief survey. In: 2020 International Conference on Information and Communication Technology Convergence (ICTC).
10.
Zurück zum Zitat Li, X., & Yang, L. (2012). Design and Implementation of UAV Intelligent Aerial Photography System," in 2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics. Li, X., & Yang, L. (2012). Design and Implementation of UAV Intelligent Aerial Photography System," in 2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics.
11.
Zurück zum Zitat Abushahma, R. I. H., Ali, M. A. M., Rahman, N. A. A., & Al-Sanjary, O. I. (2019). Comparative features of unmanned aerial vehicle (UAV) for border protection of Libya: A review. In: 2019 IEEE 15th International Colloquium on Signal Processing & Its Applications (CSPA). Abushahma, R. I. H., Ali, M. A. M., Rahman, N. A. A., & Al-Sanjary, O. I. (2019). Comparative features of unmanned aerial vehicle (UAV) for border protection of Libya: A review. In: 2019 IEEE 15th International Colloquium on Signal Processing & Its Applications (CSPA).
12.
Zurück zum Zitat Saulnier, A., & Thompson, S. N. (2016). Police UAV use: Institutional realities and public perceptions. Policing-an International Journal of Police Strategies & Management, 39(4), 680–693.CrossRef Saulnier, A., & Thompson, S. N. (2016). Police UAV use: Institutional realities and public perceptions. Policing-an International Journal of Police Strategies & Management, 39(4), 680–693.CrossRef
13.
Zurück zum Zitat Germanese, D., Leone, G. R., Moroni, D., Pascali, M. A., & Tampucci, M. (2018). Long-term monitoring of crack patterns in historic structures using UAVs and planar markers: A preliminary study. Journal of Imaging, 4(8), 99.CrossRef Germanese, D., Leone, G. R., Moroni, D., Pascali, M. A., & Tampucci, M. (2018). Long-term monitoring of crack patterns in historic structures using UAVs and planar markers: A preliminary study. Journal of Imaging, 4(8), 99.CrossRef
14.
Zurück zum Zitat Yang, Y., Zheng, Z., Bian, K., Song, L., & Han, Z. (2018). Real-time profiling of fine-grained air quality index distribution using UAV sensing. IEEE Internet of Things Journal, 5(1), 186–198.CrossRef Yang, Y., Zheng, Z., Bian, K., Song, L., & Han, Z. (2018). Real-time profiling of fine-grained air quality index distribution using UAV sensing. IEEE Internet of Things Journal, 5(1), 186–198.CrossRef
15.
Zurück zum Zitat Mohajer, A., Bavaghar, M., & Farrokhi, H. (2020). Mobility-aware load balancing for reliable self-organization networks: Multi-agent deep reinforcement learning. Reliability Engineering & System Safety, 202, 107056.CrossRef Mohajer, A., Bavaghar, M., & Farrokhi, H. (2020). Mobility-aware load balancing for reliable self-organization networks: Multi-agent deep reinforcement learning. Reliability Engineering & System Safety, 202, 107056.CrossRef
16.
Zurück zum Zitat Gupta, L., Jain, R., & Vaszkun, G. (2016). Survey of important issues in UAV communication networks. IEEE Communications Surveys and Tutorials, 18(2), 1123–1152.CrossRef Gupta, L., Jain, R., & Vaszkun, G. (2016). Survey of important issues in UAV communication networks. IEEE Communications Surveys and Tutorials, 18(2), 1123–1152.CrossRef
17.
Zurück zum Zitat Zeng, Y., Lyu, J., & Zhang, R. (2019). Cellular-connected UAV: Potential, challenges, and promising technologies. IEEE Wireless Communications, 26(1), 120–127.CrossRef Zeng, Y., Lyu, J., & Zhang, R. (2019). Cellular-connected UAV: Potential, challenges, and promising technologies. IEEE Wireless Communications, 26(1), 120–127.CrossRef
18.
Zurück zum Zitat Al-Hourani, A., Kandeepan, S., & Lardner, S. (2014). Optimal LAP altitude for maximum coverage. IEEE Wireless Communications Letters, 3(6), 569–572.CrossRef Al-Hourani, A., Kandeepan, S., & Lardner, S. (2014). Optimal LAP altitude for maximum coverage. IEEE Wireless Communications Letters, 3(6), 569–572.CrossRef
19.
Zurück zum Zitat Al-Ahmed, S. A., Ahmed, T., Zhu, Y., Malaolu, O. O., & Shakir, M. Z. (2021). UAV-enabled IoT networks: Architecture, opportunities and challenges. Springer. Al-Ahmed, S. A., Ahmed, T., Zhu, Y., Malaolu, O. O., & Shakir, M. Z. (2021). UAV-enabled IoT networks: Architecture, opportunities and challenges. Springer.
20.
Zurück zum Zitat Anicho, O., Charlesworth, P. B., Baicher, G. S., & Nagar, A. (2020). Situation awareness and routing challenges in unmanned HAPS/UAV based communications networks. In: 2020 International Conference on Unmanned Aircraft Systems (ICUAS). Anicho, O., Charlesworth, P. B., Baicher, G. S., & Nagar, A. (2020). Situation awareness and routing challenges in unmanned HAPS/UAV based communications networks. In: 2020 International Conference on Unmanned Aircraft Systems (ICUAS).
21.
Zurück zum Zitat Hsieh, F., Jardel, F., Visotsky, E., Vook, F., Ghosh, A., Picha, B. (2020). UAV-based multi-cell HAPS communication: System design and performance evaluation," in GLOBECOM 2020 - 2020 IEEE Global Communications Conference. Hsieh, F., Jardel, F., Visotsky, E., Vook, F., Ghosh, A., Picha, B. (2020). UAV-based multi-cell HAPS communication: System design and performance evaluation," in GLOBECOM 2020 - 2020 IEEE Global Communications Conference.
22.
Zurück zum Zitat Zeng, Y., Zhang, R., & Lim, T. J. (2016). Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Communications Magazine, 54(5), 36–42.CrossRef Zeng, Y., Zhang, R., & Lim, T. J. (2016). Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Communications Magazine, 54(5), 36–42.CrossRef
23.
Zurück zum Zitat Wu, Q., Liu, L., & Zhang, R. (2019). Fundamental trade-offs in communication and trajectory design for UAV-enabled wireless network. IEEE Wireless Communications, 26(1), 36–44.CrossRef Wu, Q., Liu, L., & Zhang, R. (2019). Fundamental trade-offs in communication and trajectory design for UAV-enabled wireless network. IEEE Wireless Communications, 26(1), 36–44.CrossRef
24.
Zurück zum Zitat Huang, W., Yang, Z., Pan, C., Pei, L., Chen, M., Shikh-Bahaei, M., Elkashlan, M., & Nallanathan, A. (2019). Joint power, altitude, location and bandwidth optimization for UAV with underlaid D2D communications. IEEE Wireless Communications Letters, 8(2), 524–527.CrossRef Huang, W., Yang, Z., Pan, C., Pei, L., Chen, M., Shikh-Bahaei, M., Elkashlan, M., & Nallanathan, A. (2019). Joint power, altitude, location and bandwidth optimization for UAV with underlaid D2D communications. IEEE Wireless Communications Letters, 8(2), 524–527.CrossRef
25.
Zurück zum Zitat He, H., Zhang, S., Zeng, Y., & Zhang, R. (2018). Joint altitude and beamwidth optimization for UAV-enabled multiuser communications. IEEE Communications Letters, 22(2), 344–347.CrossRef He, H., Zhang, S., Zeng, Y., & Zhang, R. (2018). Joint altitude and beamwidth optimization for UAV-enabled multiuser communications. IEEE Communications Letters, 22(2), 344–347.CrossRef
26.
Zurück zum Zitat Cui, J., Shakhatreh, H., Hu, B., Chen, S., & Wang, C. (2018). Power-efficient deployment of a UAV for emergency indoor wireless coverage. IEEE Access, 6, 73200–73209.CrossRef Cui, J., Shakhatreh, H., Hu, B., Chen, S., & Wang, C. (2018). Power-efficient deployment of a UAV for emergency indoor wireless coverage. IEEE Access, 6, 73200–73209.CrossRef
27.
Zurück zum Zitat Motlagh, N. H., Taleb, T., & Arouk, O. (2016). Low-altitude unmanned aerial vehicles-based internet of things services: Comprehensive survey and future perspectives. IEEE Internet of Things Journal, 3(6), 899–922.CrossRef Motlagh, N. H., Taleb, T., & Arouk, O. (2016). Low-altitude unmanned aerial vehicles-based internet of things services: Comprehensive survey and future perspectives. IEEE Internet of Things Journal, 3(6), 899–922.CrossRef
28.
Zurück zum Zitat Karapantazis, S., & Pavlidou, F.-N. (2005). Broadband communications via high-altitude platforms: A survey. IEEE Communications Surveys and Tutorials, 7(1), 2–31.CrossRef Karapantazis, S., & Pavlidou, F.-N. (2005). Broadband communications via high-altitude platforms: A survey. IEEE Communications Surveys and Tutorials, 7(1), 2–31.CrossRef
29.
Zurück zum Zitat Hayat, S., Yanmaz, E., & Muzaffar, R. (2016). Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint. IEEE Communications Surveys and Tutorials, 18(4), 2624–2661.CrossRef Hayat, S., Yanmaz, E., & Muzaffar, R. (2016). Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint. IEEE Communications Surveys and Tutorials, 18(4), 2624–2661.CrossRef
30.
31.
Zurück zum Zitat Bergh, B. V. D., Chiumento, A., & Pollin, S. (2016). LTE in the sky: Trading off propagation benefits with interference costs for aerial nodes. IEEE Communications Magazine, 54(5), 44–50.CrossRef Bergh, B. V. D., Chiumento, A., & Pollin, S. (2016). LTE in the sky: Trading off propagation benefits with interference costs for aerial nodes. IEEE Communications Magazine, 54(5), 44–50.CrossRef
32.
Zurück zum Zitat Chandrasekharan, S., Gomez, K., Al-Hourani, A., Kandeepan, S., Rasheed, T., Goratti, L., Reynaud, L., Grace, D., Bucaille, I., Wirth, T., & Allsopp, S. (2016). Designing and implementing future aerial communication networks. IEEE Communications Magazine, 54(5), 26–34.CrossRef Chandrasekharan, S., Gomez, K., Al-Hourani, A., Kandeepan, S., Rasheed, T., Goratti, L., Reynaud, L., Grace, D., Bucaille, I., Wirth, T., & Allsopp, S. (2016). Designing and implementing future aerial communication networks. IEEE Communications Magazine, 54(5), 26–34.CrossRef
33.
Zurück zum Zitat Zhang, S., Zeng, Y., & Zhang, R. (2019). Cellular-enabled UAV communication: A connectivity-constrained trajectory optimization perspective. IEEE Transactions on Communications, 67(3), 2580–2604.CrossRef Zhang, S., Zeng, Y., & Zhang, R. (2019). Cellular-enabled UAV communication: A connectivity-constrained trajectory optimization perspective. IEEE Transactions on Communications, 67(3), 2580–2604.CrossRef
34.
Zurück zum Zitat Liu, L., Zhang, S., & Zhang, R. (2019). CoMP in the sky: UAV placement and movement optimization for multi-user communications. IEEE Transactions on Communications, 67, 5645–5658.CrossRef Liu, L., Zhang, S., & Zhang, R. (2019). CoMP in the sky: UAV placement and movement optimization for multi-user communications. IEEE Transactions on Communications, 67, 5645–5658.CrossRef
35.
Zurück zum Zitat Shakhatreh, H., Khreishah, A., Othman, N. S., & Sawalmeh, A. (2017). Maximizing indoor wireless coverage using UAVs equipped with directional antennas. In: 2017 IEEE 13th Malaysia International Conference on Communications (MICC). Shakhatreh, H., Khreishah, A., Othman, N. S., & Sawalmeh, A. (2017). Maximizing indoor wireless coverage using UAVs equipped with directional antennas. In: 2017 IEEE 13th Malaysia International Conference on Communications (MICC).
36.
Zurück zum Zitat Zeng, Y., & Zhang, R. (2017). Energy-efficient UAV communication with trajectory optimization. IEEE Transactions on Wireless Communications, 16(6), 3747–3760.CrossRef Zeng, Y., & Zhang, R. (2017). Energy-efficient UAV communication with trajectory optimization. IEEE Transactions on Wireless Communications, 16(6), 3747–3760.CrossRef
37.
Zurück zum Zitat Jeong, S., Simeone, O., & Kang, J. (2018). Mobile edge computing via a UAV-mounted cloudlet: Optimization of bit allocation and path planning. IEEE Transactions on Vehicular Technology, 67(3), 2049–2063.CrossRef Jeong, S., Simeone, O., & Kang, J. (2018). Mobile edge computing via a UAV-mounted cloudlet: Optimization of bit allocation and path planning. IEEE Transactions on Vehicular Technology, 67(3), 2049–2063.CrossRef
38.
Zurück zum Zitat Chen, Y., Feng, W., & Zheng, G. (2018). Optimum placement of UAV as relays. IEEE Communications Letters, 22(2), 248–251.CrossRef Chen, Y., Feng, W., & Zheng, G. (2018). Optimum placement of UAV as relays. IEEE Communications Letters, 22(2), 248–251.CrossRef
39.
Zurück zum Zitat Zeng, Y., Zhang, R., & Lim, T. J. (2016). Throughput maximization for UAV-enabled mobile relaying systems. IEEE Transactions on Communications, 64(12), 4983–4996.CrossRef Zeng, Y., Zhang, R., & Lim, T. J. (2016). Throughput maximization for UAV-enabled mobile relaying systems. IEEE Transactions on Communications, 64(12), 4983–4996.CrossRef
40.
Zurück zum Zitat Zhang, S., Zhang, H., He, Q., Bian, K., & Song, L. (2018). Joint trajectory and power optimization for UAV relay networks. IEEE Communications Letters, 22(1), 161–164.CrossRef Zhang, S., Zhang, H., He, Q., Bian, K., & Song, L. (2018). Joint trajectory and power optimization for UAV relay networks. IEEE Communications Letters, 22(1), 161–164.CrossRef
41.
Zurück zum Zitat Zhan, C., Zeng, Y., & Zhang, R. (2018). Energy-efficient data collection in UAV enabled wireless sensor network. IEEE Wireless Communications Letters, 7(3), 328–331.CrossRef Zhan, C., Zeng, Y., & Zhang, R. (2018). Energy-efficient data collection in UAV enabled wireless sensor network. IEEE Wireless Communications Letters, 7(3), 328–331.CrossRef
42.
Zurück zum Zitat Zhan, C., Zeng, Y., & Zhang, R. (2018). Trajectory design for distributed estimation in UAV-enabled wireless sensor network. IEEE Transactions on Vehicular Technology, 67(10), 10155–10159.CrossRef Zhan, C., Zeng, Y., & Zhang, R. (2018). Trajectory design for distributed estimation in UAV-enabled wireless sensor network. IEEE Transactions on Vehicular Technology, 67(10), 10155–10159.CrossRef
43.
Zurück zum Zitat Mozaffari, M. M., Saad, W., Bennis, M., & Debbah, M. (2016). Mobile Internet of Things: Can UAVs provide an energy-efficient mobile architecture? Global communications conference, 16(11), 1–6. Mozaffari, M. M., Saad, W., Bennis, M., & Debbah, M. (2016). Mobile Internet of Things: Can UAVs provide an energy-efficient mobile architecture? Global communications conference, 16(11), 1–6.
44.
Zurück zum Zitat Mozaffari, M. M., Saad, W., Bennis, M., Nam, Y.-H., & Debbah, M. (2019). A tutorial on UAVs for wireless networks: Applications, challenges, and open problems. IEEE Communications Surveys and Tutorials, 21, 2334–2360.CrossRef Mozaffari, M. M., Saad, W., Bennis, M., Nam, Y.-H., & Debbah, M. (2019). A tutorial on UAVs for wireless networks: Applications, challenges, and open problems. IEEE Communications Surveys and Tutorials, 21, 2334–2360.CrossRef
45.
Zurück zum Zitat Cicek, C. T., Kutlu, T., Gultekin, H., Tavli, B., & Yanikomeroglu, H. (2018). Backhaul-aware placement of a UAV-BS with bandwidth allocation for user-centric operation and profit maximization. arXiv preprint https://arxiv.org/abs/1810.12395. Cicek, C. T., Kutlu, T., Gultekin, H., Tavli, B., & Yanikomeroglu, H. (2018). Backhaul-aware placement of a UAV-BS with bandwidth allocation for user-centric operation and profit maximization. arXiv preprint https://​arxiv.​org/​abs/​1810.​12395.
46.
Zurück zum Zitat Kalantari, E., Yanikomeroglu, H., & Yongacoglu, A. (2016). On the number and 3D placement of drone base stations in wireless cellular networks. In: 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall). Kalantari, E., Yanikomeroglu, H., & Yongacoglu, A. (2016). On the number and 3D placement of drone base stations in wireless cellular networks. In: 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall).
47.
Zurück zum Zitat Alzenad, M., El-Keyi, A., & Yanikomeroglu, H. (2018). 3-D Placement of an unmanned aerial vehicle base station for maximum coverage of users with different QoS requirements. IEEE Wireless Communications Letters, 7(1), 38–41.CrossRef Alzenad, M., El-Keyi, A., & Yanikomeroglu, H. (2018). 3-D Placement of an unmanned aerial vehicle base station for maximum coverage of users with different QoS requirements. IEEE Wireless Communications Letters, 7(1), 38–41.CrossRef
48.
Zurück zum Zitat Chen, J., & Gesbert, D. (2017). Optimal positioning of flying relays for wireless networks: A LOS map approach," in 2017 IEEE International Conference on Communications (ICC). Chen, J., & Gesbert, D. (2017). Optimal positioning of flying relays for wireless networks: A LOS map approach," in 2017 IEEE International Conference on Communications (ICC).
49.
Zurück zum Zitat Lyu, J., Zeng, Y., & Zhang, R. (2018). UAV-aided offloading for cellular hotspot. IEEE Transactions on Wireless Communications, 17(6), 3988–4001.CrossRef Lyu, J., Zeng, Y., & Zhang, R. (2018). UAV-aided offloading for cellular hotspot. IEEE Transactions on Wireless Communications, 17(6), 3988–4001.CrossRef
50.
Zurück zum Zitat Sharma, V., Bennis, M., & Kumar, R. (2016). UAV-assisted heterogeneous networks for capacity enhancement. IEEE Communications Letters, 20(6), 1207–1210.CrossRef Sharma, V., Bennis, M., & Kumar, R. (2016). UAV-assisted heterogeneous networks for capacity enhancement. IEEE Communications Letters, 20(6), 1207–1210.CrossRef
51.
Zurück zum Zitat Zhang, Q., Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2018). Machine learning for predictive on-demand deployment of Uavs for wireless communications. In: 2018 IEEE Global Communications Conference (GLOBECOM). Zhang, Q., Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2018). Machine learning for predictive on-demand deployment of Uavs for wireless communications. In: 2018 IEEE Global Communications Conference (GLOBECOM).
52.
Zurück zum Zitat E. Bulut and I. Guevenc, "Trajectory Optimization for Cellular-Connected UAVs with Disconnectivity Constraint," in 2018 IEEE International Conference on Communications Workshops (ICC Workshops), 2018. E. Bulut and I. Guevenc, "Trajectory Optimization for Cellular-Connected UAVs with Disconnectivity Constraint," in 2018 IEEE International Conference on Communications Workshops (ICC Workshops), 2018.
53.
Zurück zum Zitat Li, B., Fei, Z., & Zhang, Y. (2019). UAV communications for 5G and beyond: Recent advances and future trends. IEEE Internet of Things Journal, 6(2), 2241–2263.CrossRef Li, B., Fei, Z., & Zhang, Y. (2019). UAV communications for 5G and beyond: Recent advances and future trends. IEEE Internet of Things Journal, 6(2), 2241–2263.CrossRef
54.
Zurück zum Zitat Mozaffari, M., Kasgari, A. T. Z., Saad, W., Bennis, M., & Debbah, M. (2019). Beyond 5G with UAVs: Foundations of a 3D wireless cellular network. IEEE Transactions on Wireless Communications, 18(1), 357–372.CrossRef Mozaffari, M., Kasgari, A. T. Z., Saad, W., Bennis, M., & Debbah, M. (2019). Beyond 5G with UAVs: Foundations of a 3D wireless cellular network. IEEE Transactions on Wireless Communications, 18(1), 357–372.CrossRef
55.
Zurück zum Zitat Cao, X., Yang, P., Alzenad, M., Xi, X., Wu, D. O., & Yanikomeroglu, H. (2018). Airborne communication networks: A survey. IEEE Journal on Selected Areas in Communications, 36(9), 1907–1926.CrossRef Cao, X., Yang, P., Alzenad, M., Xi, X., Wu, D. O., & Yanikomeroglu, H. (2018). Airborne communication networks: A survey. IEEE Journal on Selected Areas in Communications, 36(9), 1907–1926.CrossRef
56.
Zurück zum Zitat Zhang, J., Zeng, Y., & Zhang, R. (2018). UAV-enabled radio access network: Multi-mode communication and trajectory design. IEEE Transactions on Signal Processing, 66(20), 5269–5284.MathSciNetMATHCrossRef Zhang, J., Zeng, Y., & Zhang, R. (2018). UAV-enabled radio access network: Multi-mode communication and trajectory design. IEEE Transactions on Signal Processing, 66(20), 5269–5284.MathSciNetMATHCrossRef
57.
Zurück zum Zitat Wu, Q., Zeng, Y., & Zhang, R. (2018). Joint Trajectory and Communication Design for Multi-UAV Enabled Wireless Networks. IEEE Transactions on Wireless Communications, 17(3), 2109–2121.CrossRef Wu, Q., Zeng, Y., & Zhang, R. (2018). Joint Trajectory and Communication Design for Multi-UAV Enabled Wireless Networks. IEEE Transactions on Wireless Communications, 17(3), 2109–2121.CrossRef
58.
Zurück zum Zitat Zhang, G., Wu, Q., Cui, M., & Zhang, R. (2019). Securing UAV communications via joint trajectory and power control. IEEE Transactions on Wireless Communications, 18(2), 1376–1389.CrossRef Zhang, G., Wu, Q., Cui, M., & Zhang, R. (2019). Securing UAV communications via joint trajectory and power control. IEEE Transactions on Wireless Communications, 18(2), 1376–1389.CrossRef
59.
Zurück zum Zitat Ladosz, P., Oh, H., & Chen, W.-H. (2016). Optimal positioning of communication relay unmanned aerial vehicles in urban environments. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS). Ladosz, P., Oh, H., & Chen, W.-H. (2016). Optimal positioning of communication relay unmanned aerial vehicles in urban environments. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS).
60.
Zurück zum Zitat Chen, J., Esrafilian, O., Gesbert, D., & Mitra, U. (2017). Efficient algorithms for air-to-ground channel reconstruction in UAV-aided communications. In: 2017 IEEE Globecom Workshops (GC Wkshps). Chen, J., Esrafilian, O., Gesbert, D., & Mitra, U. (2017). Efficient algorithms for air-to-ground channel reconstruction in UAV-aided communications. In: 2017 IEEE Globecom Workshops (GC Wkshps).
61.
Zurück zum Zitat Beck, A., & Tetruashvili, L. (2013). On the convergence of block coordinate descent type methods. Siam Journal on Optimization, 23(4), 2037–2060.MathSciNetMATHCrossRef Beck, A., & Tetruashvili, L. (2013). On the convergence of block coordinate descent type methods. Siam Journal on Optimization, 23(4), 2037–2060.MathSciNetMATHCrossRef
62.
Zurück zum Zitat Lyu, J., Zeng, Y., Zhang, R., & Lim, T. J. (2017). Placement optimization of UAV-mounted mobile base stations. IEEE Communications Letters, 21(3), 604–607.CrossRef Lyu, J., Zeng, Y., Zhang, R., & Lim, T. J. (2017). Placement optimization of UAV-mounted mobile base stations. IEEE Communications Letters, 21(3), 604–607.CrossRef
63.
Zurück zum Zitat Yu, J., Zhang, R., Gao, Y., & Yang, L.-L. (2018). Modularity-based dynamic clustering for energy efficient UAVS-aided communications. IEEE Wireless Communications Letters, 7(5), 728–731.CrossRef Yu, J., Zhang, R., Gao, Y., & Yang, L.-L. (2018). Modularity-based dynamic clustering for energy efficient UAVS-aided communications. IEEE Wireless Communications Letters, 7(5), 728–731.CrossRef
64.
Zurück zum Zitat Guo, J., Walk, P., & Jafarkhani, H. (2019). Quantizers with parameterized distortion measures. In: 2019 Data Compression Conference (DCC). Guo, J., Walk, P., & Jafarkhani, H. (2019). Quantizers with parameterized distortion measures. In: 2019 Data Compression Conference (DCC).
65.
Zurück zum Zitat Xu, K., Zhao, M.-M., Cai, Y., & Hanzo, L. (2021). Low-complexity joint power allocation and trajectory design for UAV-enabled secure communications with power splitting. IEEE Transactions on Communications, 69(3), 1896–1911.CrossRef Xu, K., Zhao, M.-M., Cai, Y., & Hanzo, L. (2021). Low-complexity joint power allocation and trajectory design for UAV-enabled secure communications with power splitting. IEEE Transactions on Communications, 69(3), 1896–1911.CrossRef
66.
Zurück zum Zitat Bithas, P. S., Michailidis, E. T., Nomikos, N., Vouyioukas, D., & Kanatas, A. G. (2019). A survey on machine-learning techniques for UAV-based communications. Sensors, 19(23), 5170.CrossRef Bithas, P. S., Michailidis, E. T., Nomikos, N., Vouyioukas, D., & Kanatas, A. G. (2019). A survey on machine-learning techniques for UAV-based communications. Sensors, 19(23), 5170.CrossRef
67.
Zurück zum Zitat Koyuncu, E., Shabanighazikelayeh, M., & Seferoglu, H. (2018). Deployment and trajectory optimization of UAVs: A quantization theory approach. IEEE Transactions on Wireless Communications, 17(12), 8531–8546.CrossRef Koyuncu, E., Shabanighazikelayeh, M., & Seferoglu, H. (2018). Deployment and trajectory optimization of UAVs: A quantization theory approach. IEEE Transactions on Wireless Communications, 17(12), 8531–8546.CrossRef
68.
Zurück zum Zitat Liu, X., Liu, Y., Zhang, N., Wu, W., & Liu, A. (2019). Optimizing trajectory of unmanned aerial vehicles for efficient data acquisition: A matrix completion approach. IEEE Internet of Things Journal, 6(2), 1829–1840.CrossRef Liu, X., Liu, Y., Zhang, N., Wu, W., & Liu, A. (2019). Optimizing trajectory of unmanned aerial vehicles for efficient data acquisition: A matrix completion approach. IEEE Internet of Things Journal, 6(2), 1829–1840.CrossRef
69.
Zurück zum Zitat Fan, R., Cui, J., Jin, S., Yang, K., & An, J. (2018). Optimal node placement and resource allocation for UAV relaying network. IEEE Communications Letters, 22(4), 808–811.CrossRef Fan, R., Cui, J., Jin, S., Yang, K., & An, J. (2018). Optimal node placement and resource allocation for UAV relaying network. IEEE Communications Letters, 22(4), 808–811.CrossRef
70.
Zurück zum Zitat Cheng, F., Zhang, S., Li, Z., Chen, Y., Zhao, N., Yu, F. R., & Leung, V. C. M. (2018). UAV trajectory optimization for data offloading at the edge of multiple cells. IEEE Transactions on Vehicular Technology, 67(7), 6732–6736.CrossRef Cheng, F., Zhang, S., Li, Z., Chen, Y., Zhao, N., Yu, F. R., & Leung, V. C. M. (2018). UAV trajectory optimization for data offloading at the edge of multiple cells. IEEE Transactions on Vehicular Technology, 67(7), 6732–6736.CrossRef
72.
Zurück zum Zitat Zeng, Y., Xu, X., & Zhang, R. (2018). Trajectory Design for Completion Time Minimization in UAV-Enabled Multicasting. IEEE Transactions on Wireless Communications, 17(4), 2233–2246.CrossRef Zeng, Y., Xu, X., & Zhang, R. (2018). Trajectory Design for Completion Time Minimization in UAV-Enabled Multicasting. IEEE Transactions on Wireless Communications, 17(4), 2233–2246.CrossRef
Metadaten
Titel
UAV Placement and Trajectory Design Optimization: A Survey
verfasst von
Ahmad Mazaherifar
Seyedakbar Mostafavi
Publikationsdatum
01.12.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-09451-7

Weitere Artikel der Ausgabe 3/2022

Wireless Personal Communications 3/2022 Zur Ausgabe

Neuer Inhalt