Skip to main content

2021 | OriginalPaper | Buchkapitel

A Review of the Research on the Life Cycle Energy of Buildings Using Science Mapping

verfasst von : Xulu Lai, Clyde Zhengdao Li, Limei Zhang, Yiyu Zhao, Zhe Chen, Shanyang Li

Erschienen in: Proceedings of the 25th International Symposium on Advancement of Construction Management and Real Estate

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Building energy consumption is the main contributor to the total energy consumption, which has an increasing impact on the environment. A systematic and comprehensive life cycle perspective assessment of building energy is crucial to maintaining project sustainability. Building energy analysis from life cycle perspective has been increasingly favoured by scholars. However, contents and links of many literatures have not been summarized, and there is a lack of systematic literature research. This review-based study adopted a three-step workflow consisting of bibliometric literature search, science mapping (keywords analysis), and systematic discussion to mining the recent decade’s research of life cycle energy of buildings (LCE-B). Keywords analysis revealed the emerging research topics, such as Environmental impact, BIM, nZEBs and passive houses. A follow-up systematic discussion summarised mainstream research topics (e.g. trade-off between operating energy and embodied energy), discusses existing research gaps (e.g. stakeholder factors) and identified future research directions. This study helps scholars obtain an in-depth understanding of state-of-the-art LCE-B research, providing a comprehensive knowledge framework and allowing linkages on the current research field to future research trends.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hong, J., Hong, T., Kang, H., et al. (2019). A framework for reducing dust emissions and energy consumption on construction sites. Energy Procedia, 158, 5092–5096.CrossRef Hong, J., Hong, T., Kang, H., et al. (2019). A framework for reducing dust emissions and energy consumption on construction sites. Energy Procedia, 158, 5092–5096.CrossRef
2.
Zurück zum Zitat He, Q., Wang, G., Luo, L., et al. (2017). Mapping the managerial areas of building information modeling (BIM) using scientometric analysis. International Journal of Project Management, 35(4), 670–685.CrossRef He, Q., Wang, G., Luo, L., et al. (2017). Mapping the managerial areas of building information modeling (BIM) using scientometric analysis. International Journal of Project Management, 35(4), 670–685.CrossRef
3.
Zurück zum Zitat Ke, Y., Wang, S., Chan, A. P. C., et al. (2009). Research trend of public-private partnership in construction journals. Journal of Construction Engineering and Management, 135(10), 1076–1086.CrossRef Ke, Y., Wang, S., Chan, A. P. C., et al. (2009). Research trend of public-private partnership in construction journals. Journal of Construction Engineering and Management, 135(10), 1076–1086.CrossRef
4.
Zurück zum Zitat Chau, C. K., Leung, T. M., & Ng, W. Y. (2015). A review on life cycle assessment, life cycle energy assessment and life cycle carbon emissions assessment on buildings (vol 143, p 395, 2015). Applied Energy, 158, 656.CrossRef Chau, C. K., Leung, T. M., & Ng, W. Y. (2015). A review on life cycle assessment, life cycle energy assessment and life cycle carbon emissions assessment on buildings (vol 143, p 395, 2015). Applied Energy, 158, 656.CrossRef
5.
Zurück zum Zitat Dixit, M. K. (2019). Life cycle recurrent embodied energy calculation of buildings: A review. Journal of Cleaner Production, 209, 731–754.CrossRef Dixit, M. K. (2019). Life cycle recurrent embodied energy calculation of buildings: A review. Journal of Cleaner Production, 209, 731–754.CrossRef
6.
Zurück zum Zitat Boafo, F. E., Kim, J., & Kim, J. (2016). Performance of modular prefabricated architecture: Case study-based review and future pathways. Sustainability, 8(6), 558.CrossRef Boafo, F. E., Kim, J., & Kim, J. (2016). Performance of modular prefabricated architecture: Case study-based review and future pathways. Sustainability, 8(6), 558.CrossRef
7.
Zurück zum Zitat Dixit, M. K., Fernandez-Solis, J. L., Lavy, S., et al. (2012). Need for an embodied energy measurement protocol for buildings: A review paper. Renewable and Sustainable Energy Reviews, 16(6), 3730–3743.CrossRef Dixit, M. K., Fernandez-Solis, J. L., Lavy, S., et al. (2012). Need for an embodied energy measurement protocol for buildings: A review paper. Renewable and Sustainable Energy Reviews, 16(6), 3730–3743.CrossRef
8.
Zurück zum Zitat Song, J., Zhang, H., & Dong, W. (2016). A review of emerging trends in global PPP research: Analysis and visualization. Scientometrics, 107(3), 1111–1147.CrossRef Song, J., Zhang, H., & Dong, W. (2016). A review of emerging trends in global PPP research: Analysis and visualization. Scientometrics, 107(3), 1111–1147.CrossRef
9.
Zurück zum Zitat Yuan, H., & Shen, L. (2011). Trend of the research on construction and demolition waste management. Waste Management, 31(4), 670–679.CrossRef Yuan, H., & Shen, L. (2011). Trend of the research on construction and demolition waste management. Waste Management, 31(4), 670–679.CrossRef
10.
Zurück zum Zitat Martinez-Aires, M. D., Lopez-Alonso, M., & Martinez-Rojas, M. (2018). Building information modeling and safety management: A systematic review. Safety Science, 101, 11–18.CrossRef Martinez-Aires, M. D., Lopez-Alonso, M., & Martinez-Rojas, M. (2018). Building information modeling and safety management: A systematic review. Safety Science, 101, 11–18.CrossRef
11.
Zurück zum Zitat Jin, R., Yuan, H., & Chen, Q. (2019). Science mapping approach to assisting the review of construction and demolition waste management research published between 2009 and 2018. Resources Conservation and Recycling, 140, 175–188.CrossRef Jin, R., Yuan, H., & Chen, Q. (2019). Science mapping approach to assisting the review of construction and demolition waste management research published between 2009 and 2018. Resources Conservation and Recycling, 140, 175–188.CrossRef
12.
Zurück zum Zitat Fahimnia, B., Sarkis, J., & Davarzani, H. (2015). Green supply chain management: A review and bibliometric analysis. International Journal of Production Economics, 162, 101–114.CrossRef Fahimnia, B., Sarkis, J., & Davarzani, H. (2015). Green supply chain management: A review and bibliometric analysis. International Journal of Production Economics, 162, 101–114.CrossRef
13.
Zurück zum Zitat Butler, L., & Visser, M. S. (2006). Extending citation analysis to non-source items. Scientometrics, 66(2), 327–343.CrossRef Butler, L., & Visser, M. S. (2006). Extending citation analysis to non-source items. Scientometrics, 66(2), 327–343.CrossRef
14.
Zurück zum Zitat Natarajan, M., Rahimi, M., Sen, S., et al. (2015). Living wall systems: Evaluating life-cycle energy, water and carbon impacts. Urban Ecosystems, 18(1), 1–11.CrossRef Natarajan, M., Rahimi, M., Sen, S., et al. (2015). Living wall systems: Evaluating life-cycle energy, water and carbon impacts. Urban Ecosystems, 18(1), 1–11.CrossRef
15.
Zurück zum Zitat Ren, J., An, D., Liang, H., et al. (2016). Life cycle energy and CO2 emission optimization for biofuel supply chain planning under uncertainties. Energy, 103, 151–166.CrossRef Ren, J., An, D., Liang, H., et al. (2016). Life cycle energy and CO2 emission optimization for biofuel supply chain planning under uncertainties. Energy, 103, 151–166.CrossRef
16.
Zurück zum Zitat Vats, G., & Vaish, R. (2019). Smart materials selection for thermal energy efficient architecture. Proceedings of the National Academy of Sciences India Section A-Physical Sciences, 89(1), 11–21.CrossRef Vats, G., & Vaish, R. (2019). Smart materials selection for thermal energy efficient architecture. Proceedings of the National Academy of Sciences India Section A-Physical Sciences, 89(1), 11–21.CrossRef
17.
Zurück zum Zitat Hoxha, V., Haugen, T., & Bjorberg, S. (2017). Measuring perception about sustainability of building materials in Kosovo. Facilities, 35(7–8SI), 436–461.CrossRef Hoxha, V., Haugen, T., & Bjorberg, S. (2017). Measuring perception about sustainability of building materials in Kosovo. Facilities, 35(7–8SI), 436–461.CrossRef
18.
Zurück zum Zitat van Eck, N. J., & Waltman, L. (2014). Visualizing bibliometric networks, measuring scholarly impact: Methods and practice (pp. 285–320). Springer International Publishing. van Eck, N. J., & Waltman, L. (2014). Visualizing bibliometric networks, measuring scholarly impact: Methods and practice (pp. 285–320). Springer International Publishing.
19.
Zurück zum Zitat Jin, R., Zou, P. X. W., Piroozfar, P., et al. (2019). A science mapping approach based review of construction safety research. Safety Science, 113, 285–297.CrossRef Jin, R., Zou, P. X. W., Piroozfar, P., et al. (2019). A science mapping approach based review of construction safety research. Safety Science, 113, 285–297.CrossRef
20.
Zurück zum Zitat Goggins, J., Moran, P., Armstrong, A., et al. (2016). Lifecycle environmental and economic performance of nearly zero energy buildings (NZEB) in Ireland. Energy and Buildings, 116, 622–637.CrossRef Goggins, J., Moran, P., Armstrong, A., et al. (2016). Lifecycle environmental and economic performance of nearly zero energy buildings (NZEB) in Ireland. Energy and Buildings, 116, 622–637.CrossRef
21.
Zurück zum Zitat Dawood, S., Crosbie, T., Dawood, N., et al. (2013). Designing low carbon buildings: A framework to reduce energy consumption and embed the use of renewables. Sustainable Cities and Society, 8, 63–71.CrossRef Dawood, S., Crosbie, T., Dawood, N., et al. (2013). Designing low carbon buildings: A framework to reduce energy consumption and embed the use of renewables. Sustainable Cities and Society, 8, 63–71.CrossRef
22.
Zurück zum Zitat Liu, Z., Liu, Y., He, B., et al. (2019). Application and suitability analysis of the key technologies in nearly zero energy buildings in China. Renewable and Sustainable Energy Reviews, 101, 329–345.CrossRef Liu, Z., Liu, Y., He, B., et al. (2019). Application and suitability analysis of the key technologies in nearly zero energy buildings in China. Renewable and Sustainable Energy Reviews, 101, 329–345.CrossRef
23.
Zurück zum Zitat Shirazi, A., & Ashuri, B. (2018). Embodied life cycle assessment comparison of single family residential houses considering the 1970s transition in construction industry: Atlanta case study. Building and Environment, 140, 55–67.CrossRef Shirazi, A., & Ashuri, B. (2018). Embodied life cycle assessment comparison of single family residential houses considering the 1970s transition in construction industry: Atlanta case study. Building and Environment, 140, 55–67.CrossRef
24.
Zurück zum Zitat Chau, C. K., Xu, J. M., Leung, T. M., et al. (2017). Evaluation of the impacts of end-of-life management strategies for deconstruction of a high-rise concrete framed office building. Applied Energyclean, Efficient and Affordable Energy for a Sustainable Future, 185, 1595–1603. Chau, C. K., Xu, J. M., Leung, T. M., et al. (2017). Evaluation of the impacts of end-of-life management strategies for deconstruction of a high-rise concrete framed office building. Applied Energyclean, Efficient and Affordable Energy for a Sustainable Future, 185, 1595–1603.
25.
Zurück zum Zitat Invidiata, A., & Ghisi, E. (2016). Life-cycle energy and cost analyses of window shading used to improve the thermal performance of houses. Journal of Cleaner Production, 133, 1371–1383.CrossRef Invidiata, A., & Ghisi, E. (2016). Life-cycle energy and cost analyses of window shading used to improve the thermal performance of houses. Journal of Cleaner Production, 133, 1371–1383.CrossRef
26.
Zurück zum Zitat Bastos, J., Batterman, S. A., & Freire, F. (2014). Life-cycle energy and greenhouse gas analysis of three building types in a residential area in Lisbon. Energy and Buildings, 69, 344–353.CrossRef Bastos, J., Batterman, S. A., & Freire, F. (2014). Life-cycle energy and greenhouse gas analysis of three building types in a residential area in Lisbon. Energy and Buildings, 69, 344–353.CrossRef
27.
Zurück zum Zitat Atmaca, A., & Atmaca, N. (2015). Life cycle energy (LCEA) and carbon dioxide emissions (LCCO(2)A) assessment of two residential buildings in Gaziantep, Turkey. Energy and Buildings, 102, 417–431.CrossRef Atmaca, A., & Atmaca, N. (2015). Life cycle energy (LCEA) and carbon dioxide emissions (LCCO(2)A) assessment of two residential buildings in Gaziantep, Turkey. Energy and Buildings, 102, 417–431.CrossRef
28.
Zurück zum Zitat Orr, J., Bras, A., & Ibell, T. (2017). Effectiveness of design codes for life cycle energy optimisation. Energy and Buildings, 140, 61–67.CrossRef Orr, J., Bras, A., & Ibell, T. (2017). Effectiveness of design codes for life cycle energy optimisation. Energy and Buildings, 140, 61–67.CrossRef
29.
Zurück zum Zitat Dixit, M. K., Culp, C. H., & Fernandez-Solis, J. L. (2013). System boundary for embodied energy in buildings: A conceptual model for definition. Renewable and Sustainable Energy Reviews, 21, 153–164.CrossRef Dixit, M. K., Culp, C. H., & Fernandez-Solis, J. L. (2013). System boundary for embodied energy in buildings: A conceptual model for definition. Renewable and Sustainable Energy Reviews, 21, 153–164.CrossRef
30.
Zurück zum Zitat Gervasio, H., Santos, P., Da Silva, L. S., et al. (2010). Influence of thermal insulation on the energy balance for cold-formed buildings. Advanced Steel Construction, 6(2), 742–766. Gervasio, H., Santos, P., Da Silva, L. S., et al. (2010). Influence of thermal insulation on the energy balance for cold-formed buildings. Advanced Steel Construction, 6(2), 742–766.
31.
Zurück zum Zitat Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings: An overview. Energy and Buildings, 42(10), 1592–1600.CrossRef Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings: An overview. Energy and Buildings, 42(10), 1592–1600.CrossRef
32.
Zurück zum Zitat Colclough, S., & McGrath, T. (2015). Net energy analysis of a solar combi system with seasonal thermal energy store. Applied Energy, 147, 611–616.CrossRef Colclough, S., & McGrath, T. (2015). Net energy analysis of a solar combi system with seasonal thermal energy store. Applied Energy, 147, 611–616.CrossRef
33.
Zurück zum Zitat Filimonau, V., Dickinson, J., Robbins, D., et al. (2011). Reviewing the carbon footprint analysis of hotels: Life Cycle Energy Analysis (LCEA) as a holistic method for carbon impact appraisal of tourist accommodation. Journal of Cleaner Production, 19(17–18), 1917–1930.CrossRef Filimonau, V., Dickinson, J., Robbins, D., et al. (2011). Reviewing the carbon footprint analysis of hotels: Life Cycle Energy Analysis (LCEA) as a holistic method for carbon impact appraisal of tourist accommodation. Journal of Cleaner Production, 19(17–18), 1917–1930.CrossRef
34.
Zurück zum Zitat Rai, D., Sodagar, B., Fieldson, R., et al. (2011). Assessment of CO2 emissions reduction in a distribution warehouse. Energy, 36(4SI), 2271–2277.CrossRef Rai, D., Sodagar, B., Fieldson, R., et al. (2011). Assessment of CO2 emissions reduction in a distribution warehouse. Energy, 36(4SI), 2271–2277.CrossRef
35.
Zurück zum Zitat Kneifel, J. (2010). Life-cycle carbon and cost analysis of energy efficiency measures in new commercial buildings. Energy and Buildings, 42(3), 333–340.CrossRef Kneifel, J. (2010). Life-cycle carbon and cost analysis of energy efficiency measures in new commercial buildings. Energy and Buildings, 42(3), 333–340.CrossRef
36.
Zurück zum Zitat Ihm, P., & Krarti, M. (2012). Design optimization of energy efficient residential buildings in Tunisia. Building and Environment, 58, 81–90.CrossRef Ihm, P., & Krarti, M. (2012). Design optimization of energy efficient residential buildings in Tunisia. Building and Environment, 58, 81–90.CrossRef
37.
Zurück zum Zitat Krarti, M., & Ihm, P. (2016). Evaluation of net-zero energy residential buildings in the MENA region. Sustainable Cities and Society, 22, 116–125.CrossRef Krarti, M., & Ihm, P. (2016). Evaluation of net-zero energy residential buildings in the MENA region. Sustainable Cities and Society, 22, 116–125.CrossRef
38.
Zurück zum Zitat Russell-Smith, S. V., Lepech, M. D., Fruchter, R., et al. (2015). Sustainable target value design: Integrating life cycle assessment and target value design to improve building energy and environmental performance. Journal of Cleaner Production, 88, 43–51.CrossRef Russell-Smith, S. V., Lepech, M. D., Fruchter, R., et al. (2015). Sustainable target value design: Integrating life cycle assessment and target value design to improve building energy and environmental performance. Journal of Cleaner Production, 88, 43–51.CrossRef
39.
Zurück zum Zitat Russell-Smith, S. V., Lepech, M. D., Fruchter, R., et al. (2015). Impact of progressive sustainable target value assessment on building design decisions. Building and Environment, 85, 52–60.CrossRef Russell-Smith, S. V., Lepech, M. D., Fruchter, R., et al. (2015). Impact of progressive sustainable target value assessment on building design decisions. Building and Environment, 85, 52–60.CrossRef
40.
Zurück zum Zitat Najjar, M., Figueiredo, K., Hammad, A. W. A., et al. (2019). Integrated optimization with building information modeling and life cycle assessment for generating energy efficient buildings. Applied Energy, 250, 1366–1382.CrossRef Najjar, M., Figueiredo, K., Hammad, A. W. A., et al. (2019). Integrated optimization with building information modeling and life cycle assessment for generating energy efficient buildings. Applied Energy, 250, 1366–1382.CrossRef
41.
Zurück zum Zitat Pal, S. K., Takano, A., Alanne, K., et al. (2017). A multi-objective life cycle approach for optimal building design: A case study in Finnish context. Journal of Cleaner Production, 143, 1021–1035.CrossRef Pal, S. K., Takano, A., Alanne, K., et al. (2017). A multi-objective life cycle approach for optimal building design: A case study in Finnish context. Journal of Cleaner Production, 143, 1021–1035.CrossRef
42.
Zurück zum Zitat Rey, A., & Zmeureanu, R. (2016). Multi-objective optimization of a residential solar thermal combisystem. Solar Energy, 139, 622–632.CrossRef Rey, A., & Zmeureanu, R. (2016). Multi-objective optimization of a residential solar thermal combisystem. Solar Energy, 139, 622–632.CrossRef
43.
Zurück zum Zitat Wu, W., Guo, J., Li, J., et al. (2018). A multi-objective optimization design method in zero energy building study: A case study concerning small mass buildings in cold district of China. Energy and Buildings, 158, 1613–1624.CrossRef Wu, W., Guo, J., Li, J., et al. (2018). A multi-objective optimization design method in zero energy building study: A case study concerning small mass buildings in cold district of China. Energy and Buildings, 158, 1613–1624.CrossRef
44.
Zurück zum Zitat Sandberg, M., Mukkavaara, J., Shadram, F., et al. (2019). Multidisciplinary optimization of life-cycle energy and cost using a BIM-based master model. Sustainability, 11(1), 286.CrossRef Sandberg, M., Mukkavaara, J., Shadram, F., et al. (2019). Multidisciplinary optimization of life-cycle energy and cost using a BIM-based master model. Sustainability, 11(1), 286.CrossRef
45.
Zurück zum Zitat Shadram, F., & Mukkavaara, J. (2018). An integrated BIM-based framework for the optimization of the trade-off between embodied and operational energy. Energy and Buildings, 158, 1189–1205.CrossRef Shadram, F., & Mukkavaara, J. (2018). An integrated BIM-based framework for the optimization of the trade-off between embodied and operational energy. Energy and Buildings, 158, 1189–1205.CrossRef
46.
Zurück zum Zitat Eleftheriadis, S., Mumovic, D., & Greening, P. (2017). Life cycle energy efficiency in building structures: A review of current developments and future outlooks based on BIM capabilities. Renewable and Sustainable Energy Reviews, 67, 811–825.CrossRef Eleftheriadis, S., Mumovic, D., & Greening, P. (2017). Life cycle energy efficiency in building structures: A review of current developments and future outlooks based on BIM capabilities. Renewable and Sustainable Energy Reviews, 67, 811–825.CrossRef
47.
Zurück zum Zitat Thomas, A., Menassa, C. C., & Kamat, V. R. (2018). A systems simulation framework to realize net-zero building energy retrofits. Sustainable Cities and Society, 41, 405–420.CrossRef Thomas, A., Menassa, C. C., & Kamat, V. R. (2018). A systems simulation framework to realize net-zero building energy retrofits. Sustainable Cities and Society, 41, 405–420.CrossRef
48.
Zurück zum Zitat Huang, B., Xing, K., & Pullen, S. (2017). Energy and carbon performance evaluation for buildings and urban precincts: Review and a new modelling concept. Journal of Cleaner Production on Achieving Low/No Fossil-Carbon Economies Based upon the Essential Transformations to Support Them, 163, 24–35. Huang, B., Xing, K., & Pullen, S. (2017). Energy and carbon performance evaluation for buildings and urban precincts: Review and a new modelling concept. Journal of Cleaner Production on Achieving Low/No Fossil-Carbon Economies Based upon the Essential Transformations to Support Them, 163, 24–35.
49.
Zurück zum Zitat Hernandez, P., & Kenny, P. (2010). Integrating occupant preference and life cycle energy evaluation: a simplified method. Building Research and Information, 38(PII 9275828526), 625–637.CrossRef Hernandez, P., & Kenny, P. (2010). Integrating occupant preference and life cycle energy evaluation: a simplified method. Building Research and Information, 38(PII 9275828526), 625–637.CrossRef
50.
Zurück zum Zitat Hu, M. (2019). Building impact assessment—A combined life cycle assessment and multi criteria decision analysis framework. Resources Conservation and Recycling, 150(1), 104410.CrossRef Hu, M. (2019). Building impact assessment—A combined life cycle assessment and multi criteria decision analysis framework. Resources Conservation and Recycling, 150(1), 104410.CrossRef
51.
Zurück zum Zitat Berggren, B., Hall, M., & Wall, M. (2013). LCE analysis of buildings—Taking the step towards net zero energy buildings. Energy and Buildings, 62, 381–391.CrossRef Berggren, B., Hall, M., & Wall, M. (2013). LCE analysis of buildings—Taking the step towards net zero energy buildings. Energy and Buildings, 62, 381–391.CrossRef
52.
Zurück zum Zitat Miller, D., & Doh, J. (2015). Incorporating sustainable development principles into building design: A review from a structural perspective including case study. Structural Design of Tall and Special Buildings, 24(6), 421–439.CrossRef Miller, D., & Doh, J. (2015). Incorporating sustainable development principles into building design: A review from a structural perspective including case study. Structural Design of Tall and Special Buildings, 24(6), 421–439.CrossRef
53.
Zurück zum Zitat Chastas, P., Theodosiou, T., & Bikas, D. (2016). Embodied energy in residential buildings-towards the nearly zero energy building: A literature review. Building and Environment, 105, 267–282.CrossRef Chastas, P., Theodosiou, T., & Bikas, D. (2016). Embodied energy in residential buildings-towards the nearly zero energy building: A literature review. Building and Environment, 105, 267–282.CrossRef
Metadaten
Titel
A Review of the Research on the Life Cycle Energy of Buildings Using Science Mapping
verfasst von
Xulu Lai
Clyde Zhengdao Li
Limei Zhang
Yiyu Zhao
Zhe Chen
Shanyang Li
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-3587-8_30