Skip to main content

2015 | OriginalPaper | Buchkapitel

3. A Review on Ash Formation During Pulverized Fuel Combustion: State of Art and Future Research Needs

verfasst von : Kalpit V. Shah, Mariusz K. Cieplik, Hari B. Vuthaluru

Erschienen in: Advances in Bioprocess Technology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Solid hydrocarbon fuels—coal and biomass are commonly used for large-scale heat and power generation worldwide. The solid incombustible ash, residing from combustion, leads to several operational issues. Ash-related problems such as slagging, fouling, corrosion, erosion (all resulting in boiler efficiency reduction), emissions of particulate matter and reuse or disposal of captured ashes, may restrict future use of the said fuels. The above mentioned technical bottlenecks are closely related with fuel and combustion process characteristics, as during the combustion process, solid fuel particle undergoes several physical and chemical transformations, which all depend on both the fuel ash chemistry as well as combustion technology. The said transformations include volatilization, fragmentation, chemical reactions, nucleation, coagulation, homogeneous/heterogeneous condensation, All of these processes play a role in the formation of submicron through coarse-sized ash particles are generated. The present paper provides a synthesis of available information on typical fuel characteristics and operating parameters responsible for the said transformations and final size distribution of the ash particles based on critically reported investigations and modeling efforts to date. The fuel characteristics addressed in the review are fuel mineral matter composition and its association (mineralogy), particles’ size, shape and density, as well as char structure etc. Also reviewed is the interrelation between the fuel characteristics with operating parameters essential for the understanding of ash transformations. Descriptions of a variety of analytical methods applied to quantify the parameters responsible for ash formation are also covered, including the recognition of modeling efforts to date (from the simple calculations to advance numerical simulations).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Badzioch, S., & Hawksley, P. G. W. (1970). Kinetics of thermal decomposition of pulverized coal particles. Industrial Engineering and Chemistry Process Design and Development, 9, 521–530.CrossRef Badzioch, S., & Hawksley, P. G. W. (1970). Kinetics of thermal decomposition of pulverized coal particles. Industrial Engineering and Chemistry Process Design and Development, 9, 521–530.CrossRef
Zurück zum Zitat Barrosoa, J., Ballester, J., & Pinaa, A. (2007). Study of coal ash deposition in an entrained flow reactor: Assessment of traditional and alternative slagging indices. Fuel Processing Technology, 88, 865–876.CrossRef Barrosoa, J., Ballester, J., & Pinaa, A. (2007). Study of coal ash deposition in an entrained flow reactor: Assessment of traditional and alternative slagging indices. Fuel Processing Technology, 88, 865–876.CrossRef
Zurück zum Zitat Barta, L. E., Toqan, M. A., Beer, J. M., & Sarofim, A. F. (1992). Prediction of fly ash size and chemical composition distributions: The random coalescence model, Twenty-fourth symposium (international) on combustion (pp. 1135–1144). Pittsburgh, PA: The Combustion Institute. Barta, L. E., Toqan, M. A., Beer, J. M., & Sarofim, A. F. (1992). Prediction of fly ash size and chemical composition distributions: The random coalescence model, Twenty-fourth symposium (international) on combustion (pp. 1135–1144). Pittsburgh, PA: The Combustion Institute.
Zurück zum Zitat Baxter, L. L. (1992). Char fragmentation and fly ash formation during pulverized-coal combustion. Combustion and Flame, 90, 174–184.CrossRef Baxter, L. L. (1992). Char fragmentation and fly ash formation during pulverized-coal combustion. Combustion and Flame, 90, 174–184.CrossRef
Zurück zum Zitat Baxter, L. L. (1993). Ash deposition during biomass and coal combustion: a mechanistic approach. Biomass and Bioenergy, 4(2), 85–102.CrossRef Baxter, L. L. (1993). Ash deposition during biomass and coal combustion: a mechanistic approach. Biomass and Bioenergy, 4(2), 85–102.CrossRef
Zurück zum Zitat Benfell, K. E., & Bailey, J. G. (1998). Comparison of combustion and high pressure pyrolysis chars from Australian black coals (pp. 157-162). Eighth Australian Coal Science Conference. Benfell, K. E., & Bailey, J. G. (1998). Comparison of combustion and high pressure pyrolysis chars from Australian black coals (pp. 157-162). Eighth Australian Coal Science Conference.
Zurück zum Zitat Benson, S. A., Erickson, T. A., Jensen, R. R., & Laumb, J. D. (2002). Transformations model for predicting size and composition of ash during coal combustion. Fuel Chemistry Division Preprints, 47(2), 796. Benson, S. A., Erickson, T. A., Jensen, R. R., & Laumb, J. D. (2002). Transformations model for predicting size and composition of ash during coal combustion. Fuel Chemistry Division Preprints, 47(2), 796.
Zurück zum Zitat Bridgemana, T. G., Darvell, L. I., Jones, J. M., Williams, P. T., Fahmi, R., Bridgwater, A. V., et al. (2007). Influence of particle size on the analytical and chemical properties of two energy crops. Fuel, 86, 60–72.CrossRef Bridgemana, T. G., Darvell, L. I., Jones, J. M., Williams, P. T., Fahmi, R., Bridgwater, A. V., et al. (2007). Influence of particle size on the analytical and chemical properties of two energy crops. Fuel, 86, 60–72.CrossRef
Zurück zum Zitat Brunner, T., Obernberger, I., Jöller M., Arich, A., & Polt, P. (2001) Behavior of ash forming compounds in biomass furnaces – Measurement and analysis of aerosols formed during fixed bed biomass combustion (pp. 75–80). Aerosols from Biomass Combustion (International Seminar), International Energy Agency (IEA) and the Swiss Federal Office of Energy, BioenergyTask 32: Biomass Combustion and Cofiring (2001). Brunner, T., Obernberger, I., Jöller M., Arich, A., & Polt, P. (2001) Behavior of ash forming compounds in biomass furnaces – Measurement and analysis of aerosols formed during fixed bed biomass combustion (pp. 75–80). Aerosols from Biomass Combustion (International Seminar), International Energy Agency (IEA) and the Swiss Federal Office of Energy, BioenergyTask 32: Biomass Combustion and Cofiring (2001).
Zurück zum Zitat Buhre, B. J. P., Hinkley, J. T., Gupta, R. P., Wall, T. F., & Nelson, P. F. (2005). Submicron ash formation from coal combustion. Fuel, 84, 1206–1214.CrossRef Buhre, B. J. P., Hinkley, J. T., Gupta, R. P., Wall, T. F., & Nelson, P. F. (2005). Submicron ash formation from coal combustion. Fuel, 84, 1206–1214.CrossRef
Zurück zum Zitat Charon, O., Sarofim, A. F., & Beer, J. M. (1990). Distribution of mineral matter in pulverized coal. Progress in Energy and Combustion Science, 16, 319–326.CrossRef Charon, O., Sarofim, A. F., & Beer, J. M. (1990). Distribution of mineral matter in pulverized coal. Progress in Energy and Combustion Science, 16, 319–326.CrossRef
Zurück zum Zitat Chen, Y., Shah, N., Huggins, F. E., Huffman, G. P., Linak, W. P., & Miller, C. A. (2004). Investigation of primary fine particulate matter from coal combustion by computer-controlled scanning electron microscopy. Fuel Processing Technology, 85, 743–761.CrossRef Chen, Y., Shah, N., Huggins, F. E., Huffman, G. P., Linak, W. P., & Miller, C. A. (2004). Investigation of primary fine particulate matter from coal combustion by computer-controlled scanning electron microscopy. Fuel Processing Technology, 85, 743–761.CrossRef
Zurück zum Zitat Christensen, K. A., & Livbjerg, H. (2000). A plug flow model for chemical reactions and aerosol nucleation and growth in an alkali-containing flue gas. Aerosol Science and Technology, 33, 470–489.CrossRef Christensen, K. A., & Livbjerg, H. (2000). A plug flow model for chemical reactions and aerosol nucleation and growth in an alkali-containing flue gas. Aerosol Science and Technology, 33, 470–489.CrossRef
Zurück zum Zitat Dacombe, P., Pourkashanian, M., Williams, A., & Yap, L. (1999). Combustion-induced fragmentation behavior of isolated coal particles. Fuel, 78, 1847–1857.CrossRef Dacombe, P., Pourkashanian, M., Williams, A., & Yap, L. (1999). Combustion-induced fragmentation behavior of isolated coal particles. Fuel, 78, 1847–1857.CrossRef
Zurück zum Zitat Dayton, D. C., Belle-Oudry, D., & Nordin, A. (1999). Effect of coal minerals on chlorine and alkali metals released during biomass/coal cofiring. Energy & Fuels, 13, 1203–1211.CrossRef Dayton, D. C., Belle-Oudry, D., & Nordin, A. (1999). Effect of coal minerals on chlorine and alkali metals released during biomass/coal cofiring. Energy & Fuels, 13, 1203–1211.CrossRef
Zurück zum Zitat Demle, S., Ensor, D. S., & Ranade, M. B. (1982). Coal combustion aerosol formation mechanisms: A review. Aerosol Science and Technology, 1, 119–133.CrossRef Demle, S., Ensor, D. S., & Ranade, M. B. (1982). Coal combustion aerosol formation mechanisms: A review. Aerosol Science and Technology, 1, 119–133.CrossRef
Zurück zum Zitat Doshi, V., Vuthaluru, H. B., Korbee, R., & Kiel, J. H. A. (2009). Development of a modeling approach to predict ash formation during co-firing of coal and biomass. Fuel Processing Technology, 90(9), 1148–1156.CrossRef Doshi, V., Vuthaluru, H. B., Korbee, R., & Kiel, J. H. A. (2009). Development of a modeling approach to predict ash formation during co-firing of coal and biomass. Fuel Processing Technology, 90(9), 1148–1156.CrossRef
Zurück zum Zitat Dunn-Rankin, D. (1988). Kinetic model for simulating the evolution of particle size distributions during char combustion. Combustion Science Technology, 58, 297–314.CrossRef Dunn-Rankin, D. (1988). Kinetic model for simulating the evolution of particle size distributions during char combustion. Combustion Science Technology, 58, 297–314.CrossRef
Zurück zum Zitat Dunn-Rankin, D., & Kerstein, A. R. (1987). Numerical simulation of particle size distribution evolution during pulverized coal combustion. Combustion and Flame, 69, 193–209.CrossRef Dunn-Rankin, D., & Kerstein, A. R. (1987). Numerical simulation of particle size distribution evolution during pulverized coal combustion. Combustion and Flame, 69, 193–209.CrossRef
Zurück zum Zitat Edwards, B. F., & Ghosal, A. K. (1988). Model of ash size distribution from coal char oxidation. Morgantown, WV: Department of Physics, West Virginia University. Edwards, B. F., & Ghosal, A. K. (1988). Model of ash size distribution from coal char oxidation. Morgantown, WV: Department of Physics, West Virginia University.
Zurück zum Zitat Erickson, T. A., Ludlow, D. K., & Benson, S. A. (1992). Fly ash development from sodium, sulphur and silica during coal combustion. Fuel, 71, 15–18.CrossRef Erickson, T. A., Ludlow, D. K., & Benson, S. A. (1992). Fly ash development from sodium, sulphur and silica during coal combustion. Fuel, 71, 15–18.CrossRef
Zurück zum Zitat Ezra, Z., & Kantorovich, I. I. (2001). Mutual effects of porosity and reactivity in char oxidation. Progress in Energy and Combustion Science, 27, 667–697.CrossRef Ezra, Z., & Kantorovich, I. I. (2001). Mutual effects of porosity and reactivity in char oxidation. Progress in Energy and Combustion Science, 27, 667–697.CrossRef
Zurück zum Zitat Flagen, R. C., & Friedlander, S. K. (1978). Recent developments. In D. T. Shaw (Ed.), Aerosol science. New York, NY: Wiley. Flagen, R. C., & Friedlander, S. K. (1978). Recent developments. In D. T. Shaw (Ed.), Aerosol science. New York, NY: Wiley.
Zurück zum Zitat Frandsen, F. J., van Lith, S. C., Korbee, R., Yrjas, P., Backman, R., Obernberger, I., et al. (2007). Quantification of the release of inorganic elements from biofuels. Fuel Processing Technology, 88, 1118–1128.CrossRef Frandsen, F. J., van Lith, S. C., Korbee, R., Yrjas, P., Backman, R., Obernberger, I., et al. (2007). Quantification of the release of inorganic elements from biofuels. Fuel Processing Technology, 88, 1118–1128.CrossRef
Zurück zum Zitat Gale, T. K., Bartholomew, C. H., & Fletcher, T. H. (1995). Decreases in the swelling and porosity of bituminous coals during devolatilization at high heating rates. Combustion and Flame, 100, 94–100.CrossRef Gale, T. K., Bartholomew, C. H., & Fletcher, T. H. (1995). Decreases in the swelling and porosity of bituminous coals during devolatilization at high heating rates. Combustion and Flame, 100, 94–100.CrossRef
Zurück zum Zitat Gelbard, F. (1990). Modeling multicomponent aerosol particle growth by vapor condensation. Aerosol Science and Technology, 12, 399–412.CrossRef Gelbard, F. (1990). Modeling multicomponent aerosol particle growth by vapor condensation. Aerosol Science and Technology, 12, 399–412.CrossRef
Zurück zum Zitat Gelbard, F., & Seinfeld, J. H. (1978). Numerical solution of the dynamic equation for particulate systems. Journal of Computational Physics, 28, 357–375.CrossRef Gelbard, F., & Seinfeld, J. H. (1978). Numerical solution of the dynamic equation for particulate systems. Journal of Computational Physics, 28, 357–375.CrossRef
Zurück zum Zitat Gelbard, F., Tambour, Y., & Seinfeld, J. H. (1980). Sectional representation for simulating aerosol dynamics. Journal of Colloid Interface Science, 76(2), 541–556.CrossRef Gelbard, F., Tambour, Y., & Seinfeld, J. H. (1980). Sectional representation for simulating aerosol dynamics. Journal of Colloid Interface Science, 76(2), 541–556.CrossRef
Zurück zum Zitat Gupta, R. P. (2005). Coal research in Newcastle—Past, present and future. Fuel, 84, 1176–1188.CrossRef Gupta, R. P. (2005). Coal research in Newcastle—Past, present and future. Fuel, 84, 1176–1188.CrossRef
Zurück zum Zitat Helble, J. J., & Sarofim, A. F. (1989). Influence of char fragmentation on ash particle size distributions. Combustion and Flame, 76, 183–196.CrossRef Helble, J. J., & Sarofim, A. F. (1989). Influence of char fragmentation on ash particle size distributions. Combustion and Flame, 76, 183–196.CrossRef
Zurück zum Zitat Hurt, R. H., Calo, J. C., Fletcher, T., & Sayre, A. (2003). Fundamental Investigations of Fuel Transformations in Advanced Coal Combustion and Gasification Processes. Hurt, R. H., Calo, J. C., Fletcher, T., & Sayre, A. (2003). Fundamental Investigations of Fuel Transformations in Advanced Coal Combustion and Gasification Processes.
Zurück zum Zitat Hurt, R. H., Sarofim, A. F., & Longwell, J. P. (1991). The role of microporous surface area in the gasification of chars from a subbituminous coal. Fuel, 70, 1079–1082.CrossRef Hurt, R. H., Sarofim, A. F., & Longwell, J. P. (1991). The role of microporous surface area in the gasification of chars from a subbituminous coal. Fuel, 70, 1079–1082.CrossRef
Zurück zum Zitat Im, K. H., Ahluwalia, R. K., & Chuang, C. F. (1985). RAFT: A computer model for formation and transport of fission product aerosols in LWR primary systems. Aerosol Science and Technology, 4, 125–140.CrossRef Im, K. H., Ahluwalia, R. K., & Chuang, C. F. (1985). RAFT: A computer model for formation and transport of fission product aerosols in LWR primary systems. Aerosol Science and Technology, 4, 125–140.CrossRef
Zurück zum Zitat Jacobson, M. Z., & Turco, R. P. (1995). Simulating condensational growth, evaporation, and coagulation of aerosols using a combined moving and stationary grid. Aerosol Science and Technology, 22, 73–92.CrossRef Jacobson, M. Z., & Turco, R. P. (1995). Simulating condensational growth, evaporation, and coagulation of aerosols using a combined moving and stationary grid. Aerosol Science and Technology, 22, 73–92.CrossRef
Zurück zum Zitat Jokiniemi, J. K., Lazaridis, M., Lehtinen, K. E. J., & Kauppinen, E. I. (1994). Numerical simulation of vapor-aerosol dynamics in combustion processes. Journal of Aerosol Science, 25(3), 429–446.CrossRef Jokiniemi, J. K., Lazaridis, M., Lehtinen, K. E. J., & Kauppinen, E. I. (1994). Numerical simulation of vapor-aerosol dynamics in combustion processes. Journal of Aerosol Science, 25(3), 429–446.CrossRef
Zurück zum Zitat Kaiho, M., & Toda, Y. (1979). Change in thermoplastic properties of coal under pressure of various gases. Fuel, 58, 397–398.CrossRef Kaiho, M., & Toda, Y. (1979). Change in thermoplastic properties of coal under pressure of various gases. Fuel, 58, 397–398.CrossRef
Zurück zum Zitat Kang, S. G. (1991). Fundamental studies of mineral matter transformations during pulverized coal combustion. PhD thesis. Kang, S. G. (1991). Fundamental studies of mineral matter transformations during pulverized coal combustion. PhD thesis.
Zurück zum Zitat Kang, S. G., Helble, J. J., Sarofim, A. F., & Beer, J. M. (1988). Time-resolved evolution of fly ash during pulverized coal combustion. Proceedings twenty second symposium (international) on combustion (pp. 231–238). Pittsburgh, PA: The Combustion Institute. Kang, S. G., Helble, J. J., Sarofim, A. F., & Beer, J. M. (1988). Time-resolved evolution of fly ash during pulverized coal combustion. Proceedings twenty second symposium (international) on combustion (pp. 231–238). Pittsburgh, PA: The Combustion Institute.
Zurück zum Zitat Kang, S. G., Kerstein, A. R., Helble, J. J., & Sarofim, A. F. (1990). Simulation of residual ash formation during pulverized coal combustion: Bimodal ash particle size distribution. Aerosol Science and Technology, 13, 401–412.CrossRef Kang, S. G., Kerstein, A. R., Helble, J. J., & Sarofim, A. F. (1990). Simulation of residual ash formation during pulverized coal combustion: Bimodal ash particle size distribution. Aerosol Science and Technology, 13, 401–412.CrossRef
Zurück zum Zitat Kang, S. G, Sarofim, A. F., Beer, J. M. (1992). Effect of char structure on residual ash formation during pulverized coal combustion (pp. 1153–1159). 24th Symposium (international) on combustion, The Combustion Institute. Kang, S. G, Sarofim, A. F., Beer, J. M. (1992). Effect of char structure on residual ash formation during pulverized coal combustion (pp. 1153–1159). 24th Symposium (international) on combustion, The Combustion Institute.
Zurück zum Zitat Kerstein, A. R., & Edwards, B. F. (1987). Percolation model for simulation of char oxidation and fragmentation time-histories. Chemical Engineering Science, 42(7), 1629–1634.CrossRef Kerstein, A. R., & Edwards, B. F. (1987). Percolation model for simulation of char oxidation and fragmentation time-histories. Chemical Engineering Science, 42(7), 1629–1634.CrossRef
Zurück zum Zitat Kerstein, A. R., & Niksa, A. (1984). Fragmentation during carbon conversion: predictions and measurements Proceedings of twentieth symposium (international) on combustion (pp. 941–949). Pittsburgh, PA: The Combustion Institute. Kerstein, A. R., & Niksa, A. (1984). Fragmentation during carbon conversion: predictions and measurements Proceedings of twentieth symposium (international) on combustion (pp. 941–949). Pittsburgh, PA: The Combustion Institute.
Zurück zum Zitat Koranyi, A. D. (1989). The relationship between specific reactivity and the pore structure of coal chars during gasification. Carbon, 27, 55–61.CrossRef Koranyi, A. D. (1989). The relationship between specific reactivity and the pore structure of coal chars during gasification. Carbon, 27, 55–61.CrossRef
Zurück zum Zitat Korbee, R., Lensselink, J., & Cieplik, M. (2006). Energy Research Centre of the Netherlands, Final report of task 1.3 – Release of ash forming matter in pulverized fuel systems, SES6-CT-2003-502679. (2006). Korbee, R., Lensselink, J., & Cieplik, M. (2006). Energy Research Centre of the Netherlands, Final report of task 1.3 – Release of ash forming matter in pulverized fuel systems, SES6-CT-2003-502679. (2006).
Zurück zum Zitat Kramlich, J. C., Chenvert, B., & Park, J. (1995). Suppression of fine ash formation in pulverized coal flames, DOE grant no. DE-FG22–92PC92548, Quarterly Technical progress report no.10, For U.S. Department of Energy. Kramlich, J. C., Chenvert, B., & Park, J. (1995). Suppression of fine ash formation in pulverized coal flames, DOE grant no. DE-FG22–92PC92548, Quarterly Technical progress report no.10, For U.S. Department of Energy.
Zurück zum Zitat Kurose, R., Makino, H., Hashimoto, N., & Suzuki, A. (2007). Application of percolation model to particulate matter formation in pressurized coal combustion. Powder Technology, 172(1), 50–56.CrossRef Kurose, R., Makino, H., Hashimoto, N., & Suzuki, A. (2007). Application of percolation model to particulate matter formation in pressurized coal combustion. Powder Technology, 172(1), 50–56.CrossRef
Zurück zum Zitat Kurose, R., Matsuda, H., Makino, H., & Suzuki, A. (2003). Characteristics of particulate matter generated in pressurized coal combustion for high-efficiency power generation system. Advanced Powder Technology, 14(6), 673–694.CrossRef Kurose, R., Matsuda, H., Makino, H., & Suzuki, A. (2003). Characteristics of particulate matter generated in pressurized coal combustion for high-efficiency power generation system. Advanced Powder Technology, 14(6), 673–694.CrossRef
Zurück zum Zitat Liu, Y., Gupta, R. P., Sharma, A., Wall, T. F., Butcher, A., Miller, G., et al. (2005). Mineral matter-organic matter association characterisation by QEMSCAN and applications in coal utilization. Fuel, 84, 1259–1267.CrossRef Liu, Y., Gupta, R. P., Sharma, A., Wall, T. F., Butcher, A., Miller, G., et al. (2005). Mineral matter-organic matter association characterisation by QEMSCAN and applications in coal utilization. Fuel, 84, 1259–1267.CrossRef
Zurück zum Zitat Liu, G., Wu, H., Gupta, R. P., Lucas, J. A., Tate, A. G., & Wall, T. F. (2000). Modeling the fragmentation of non-uniform porous char particles during pulverized coal combustion. Fuel, 79, 627–633.CrossRef Liu, G., Wu, H., Gupta, R. P., Lucas, J. A., Tate, A. G., & Wall, T. F. (2000). Modeling the fragmentation of non-uniform porous char particles during pulverized coal combustion. Fuel, 79, 627–633.CrossRef
Zurück zum Zitat Liu, X., Xu, M., Yao, H., Yu, D., Lv, D., & Zhou, K. (2008). The formation and emission of particulate matter during the combustion of density separated coal fractions. Energy & Fuels, 22, 3844–3851.CrossRef Liu, X., Xu, M., Yao, H., Yu, D., Lv, D., & Zhou, K. (2008). The formation and emission of particulate matter during the combustion of density separated coal fractions. Energy & Fuels, 22, 3844–3851.CrossRef
Zurück zum Zitat Livingston, W. R. (2007). Biomass ash characteristics and behavior in combustion, gasification and pyrolysis systems, Report No: 34/07/005, Project/Sub-Project:78541/SD001. Crawley: Doosan Babcock Energy Limited. Livingston, W. R. (2007). Biomass ash characteristics and behavior in combustion, gasification and pyrolysis systems, Report No: 34/07/005, Project/Sub-Project:78541/SD001. Crawley: Doosan Babcock Energy Limited.
Zurück zum Zitat Lu, H., Jia, C., Zhang, L., & Su, G. (2007). The Study on Combustion Characteristics and Kinetics of Coal and Biomass, Challenges of Power Engineering and Environment, Springer, Berlin, Heidelberg(doi. doi:10.1007/978-3-540-76694-0). Lu, H., Jia, C., Zhang, L., & Su, G. (2007). The Study on Combustion Characteristics and Kinetics of Coal and Biomass, Challenges of Power Engineering and Environment, Springer, Berlin, Heidelberg(doi. doi:10.​1007/​978-3-540-76694-0).
Zurück zum Zitat Mathews, J. P., Hatcher, P. G., & Scaroni, A. W. (1997). Particle size dependence of coal volatile matter: is there a nonmaceral- related effect? Fuel, 76, 359–362.CrossRef Mathews, J. P., Hatcher, P. G., & Scaroni, A. W. (1997). Particle size dependence of coal volatile matter: is there a nonmaceral- related effect? Fuel, 76, 359–362.CrossRef
Zurück zum Zitat McGraw, R. (1997). Description of aerosol dynamics by the quadratum method of moment. Aerosol Science and Technology, 27(2), 255–265.CrossRef McGraw, R. (1997). Description of aerosol dynamics by the quadratum method of moment. Aerosol Science and Technology, 27(2), 255–265.CrossRef
Zurück zum Zitat Menendez, R., Vleeskens, J. M., & Marsh, H. (1993). The use of scanning electron microscopy for classification of coal chars during combustion. Fuel, 72, 611–617.CrossRef Menendez, R., Vleeskens, J. M., & Marsh, H. (1993). The use of scanning electron microscopy for classification of coal chars during combustion. Fuel, 72, 611–617.CrossRef
Zurück zum Zitat Miranda, T., Esteban, A., Rojas, S., Montero, I., & Ruiz, A. (2008). Combustion analysis of different olive residues. International Journal of Molecular Sciences, 9, 512–525.CrossRef Miranda, T., Esteban, A., Rojas, S., Montero, I., & Ruiz, A. (2008). Combustion analysis of different olive residues. International Journal of Molecular Sciences, 9, 512–525.CrossRef
Zurück zum Zitat Mitchell, R. E. (1997). Char fragmentation and its effect on unburned carbon during pulverized coal combustion, Contract no.: DE-FG22-92PC92528, For U.S. Department of Energy. Mitchell, R. E. (1997). Char fragmentation and its effect on unburned carbon during pulverized coal combustion, Contract no.: DE-FG22-92PC92528, For U.S. Department of Energy.
Zurück zum Zitat Mitchell, R. (2000). An intrinsic kinetics-based, particle population balance model for char oxidation during pulverized coal combustion. Proceedings of the Combustion Institute, 28, 2261–2270.CrossRef Mitchell, R. (2000). An intrinsic kinetics-based, particle population balance model for char oxidation during pulverized coal combustion. Proceedings of the Combustion Institute, 28, 2261–2270.CrossRef
Zurück zum Zitat Mohanty, K. K., Ottino, J. M., & Davis, H. T. (1982). Reaction & and transport in disordered composite media: Introduction of percolation concepts. Chemical Engineering Science, 37, 905–924.CrossRef Mohanty, K. K., Ottino, J. M., & Davis, H. T. (1982). Reaction & and transport in disordered composite media: Introduction of percolation concepts. Chemical Engineering Science, 37, 905–924.CrossRef
Zurück zum Zitat Morone, L. S. (1989). An experimental and modeling study of residual fly ash formation in combustion of a bituminous coal. PhD thesis, Massachusetts Institute of Technology. Morone, L. S. (1989). An experimental and modeling study of residual fly ash formation in combustion of a bituminous coal. PhD thesis, Massachusetts Institute of Technology.
Zurück zum Zitat No, S. Y., & Syred, N. (1990). Thermal stress and pressure effects on coal particle fragmentation and burning behavior in a cyclone combustor. Journal of the Institute of Energy, 63, 151–159. No, S. Y., & Syred, N. (1990). Thermal stress and pressure effects on coal particle fragmentation and burning behavior in a cyclone combustor. Journal of the Institute of Energy, 63, 151–159.
Zurück zum Zitat Reyes, S., & Jensen, K. F. (1986). Percolation concepts in modeling of gas-solid reactions—I. Application to char gasification in the kinetic regime. Chemical Engineering Science, 41(2), 333–343.CrossRef Reyes, S., & Jensen, K. F. (1986). Percolation concepts in modeling of gas-solid reactions—I. Application to char gasification in the kinetic regime. Chemical Engineering Science, 41(2), 333–343.CrossRef
Zurück zum Zitat Salatino, P., Miccio, F., & Massimilla, L. (1992). Monte Carlo simulation of combustion induced percolative fragmentation of carbons. Twenty-fourth symposium (international) on combustion (pp. 1145–1151). Pittsburgh, PA: The Combustion Institute. Salatino, P., Miccio, F., & Massimilla, L. (1992). Monte Carlo simulation of combustion induced percolative fragmentation of carbons. Twenty-fourth symposium (international) on combustion (pp. 1145–1151). Pittsburgh, PA: The Combustion Institute.
Zurück zum Zitat Salatino, P., Miccio, F., & Massimilla, L. (1993). Combustion and percolative fragmentation of carbons. Combustion and Flame, 95, 342–350.CrossRef Salatino, P., Miccio, F., & Massimilla, L. (1993). Combustion and percolative fragmentation of carbons. Combustion and Flame, 95, 342–350.CrossRef
Zurück zum Zitat Sarofim, A. F., & Helbe, J. J. (1994). The impact of ash deposition on coal fired plants. In J. Williamson & F. Wigley (Eds.), Proceedings of the engineering foundation conference (1993), Solihull, England. London: Taylor & Francis. Sarofim, A. F., & Helbe, J. J. (1994). The impact of ash deposition on coal fired plants. In J. Williamson & F. Wigley (Eds.), Proceedings of the engineering foundation conference (1993), Solihull, England. London: Taylor & Francis.
Zurück zum Zitat Sarofim, A. F., Howard, J. B., & Padia, A. S. (1977). The physical transformation of the mineral matter in pulverized coal under simulated combustion conditions. Combustion Science and Technology, 16, 187–204.CrossRef Sarofim, A. F., Howard, J. B., & Padia, A. S. (1977). The physical transformation of the mineral matter in pulverized coal under simulated combustion conditions. Combustion Science and Technology, 16, 187–204.CrossRef
Zurück zum Zitat Schurmann, H., Monkhouse, P. B., Unterberger, S., & Hein, K. R. G. (2007). In situ parametric study of alkali release in pulverized coal combustion. Proceedings of the Combustion Institute, 31, 1913–1920.CrossRef Schurmann, H., Monkhouse, P. B., Unterberger, S., & Hein, K. R. G. (2007). In situ parametric study of alkali release in pulverized coal combustion. Proceedings of the Combustion Institute, 31, 1913–1920.CrossRef
Zurück zum Zitat Shah, K. V., Cieplik, M. K., Betrand, C. I., van de Kamp, W. L., & Vuthaluru, H. B. (2010). A kinetic-empirical model for particle size distribution evolution during pulverized fuel combustion. Fuel, 89(9), 2438–2447.CrossRef Shah, K. V., Cieplik, M. K., Betrand, C. I., van de Kamp, W. L., & Vuthaluru, H. B. (2010). A kinetic-empirical model for particle size distribution evolution during pulverized fuel combustion. Fuel, 89(9), 2438–2447.CrossRef
Zurück zum Zitat Speight, J. G. (2005). Handbook of Coal Analysis (chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications), ISBN 0-471-52273-2 (cloth), Wiley-Interscience.CrossRef Speight, J. G. (2005). Handbook of Coal Analysis (chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications), ISBN 0-471-52273-2 (cloth), Wiley-Interscience.CrossRef
Zurück zum Zitat Suzuki, A., Yamamoto, T., Aoki, H., & Miura, T. (2002). Percolation model for simulation of coal combustion process. Proceedings of the Combustion Institute, 29(1), 459–466.CrossRef Suzuki, A., Yamamoto, T., Aoki, H., & Miura, T. (2002). Percolation model for simulation of coal combustion process. Proceedings of the Combustion Institute, 29(1), 459–466.CrossRef
Zurück zum Zitat Syred, N., Kurniawan, K., Griffiths, T., Gralton, T., & Ray, R. (2007). Development of fragmentation models for solid fuel combustion and gasification as subroutines for inclusion in CFD codes. Fuel, 86, 2221–2231.CrossRef Syred, N., Kurniawan, K., Griffiths, T., Gralton, T., & Ray, R. (2007). Development of fragmentation models for solid fuel combustion and gasification as subroutines for inclusion in CFD codes. Fuel, 86, 2221–2231.CrossRef
Zurück zum Zitat ten Brink, H. M., Eenkhoorn, S., & Weeda, M. (1996). The behavior of coal mineral carbonates in a simulated coal flame. Fuel Processing Technology, 47, 233–243.CrossRef ten Brink, H. M., Eenkhoorn, S., & Weeda, M. (1996). The behavior of coal mineral carbonates in a simulated coal flame. Fuel Processing Technology, 47, 233–243.CrossRef
Zurück zum Zitat Terama, T., Yamashita, T., & Ando, T. (1999). Behavior of Inorganic Materials during Pulverized Coal Combustion. Springer US: Impact of Mineral Impurities in Solid Fuel Combustion. Terama, T., Yamashita, T., & Ando, T. (1999). Behavior of Inorganic Materials during Pulverized Coal Combustion. Springer US: Impact of Mineral Impurities in Solid Fuel Combustion.
Zurück zum Zitat Terttalisia, L. (1999). Ash formation in circulating fluidized bed combustion of coal and solid biomass. PhD thesis, Helsinki University of Technology, Finland Terttalisia, L. (1999). Ash formation in circulating fluidized bed combustion of coal and solid biomass. PhD thesis, Helsinki University of Technology, Finland
Zurück zum Zitat Thy, P., Lesher, C. E., & Jenkins, B. M. (2000). Experimental determination of high-temperature elemental losses from biomass slag. Fuel, 79, 693–700.CrossRef Thy, P., Lesher, C. E., & Jenkins, B. M. (2000). Experimental determination of high-temperature elemental losses from biomass slag. Fuel, 79, 693–700.CrossRef
Zurück zum Zitat Van Lith, S. C. (2005) Release of inorganics elements during wood-firing on grate. PhD Thesis, CHEC Research Centre, Technical University of Denmark. Van Lith, S. C. (2005) Release of inorganics elements during wood-firing on grate. PhD Thesis, CHEC Research Centre, Technical University of Denmark.
Zurück zum Zitat Vuthaluru, H. B. (2004). Investigations into the pyrolytic behavior of coal/biomass blends using thermogravimetric analysis. Bioresource Technology, 92, 187–195.CrossRef Vuthaluru, H. B. (2004). Investigations into the pyrolytic behavior of coal/biomass blends using thermogravimetric analysis. Bioresource Technology, 92, 187–195.CrossRef
Zurück zum Zitat Vuthaluru, H. B., & French, D. (2008a). Ash chemistry and mineralogy of an Indonesian coal during combustion: Part 1. Drop-tube observations. Fuel Processing Technology, 89(6), 595–607.CrossRef Vuthaluru, H. B., & French, D. (2008a). Ash chemistry and mineralogy of an Indonesian coal during combustion: Part 1. Drop-tube observations. Fuel Processing Technology, 89(6), 595–607.CrossRef
Zurück zum Zitat Vuthaluru, H. B., & French, D. (2008b). Ash chemistry and mineralogy of an Indonesian coal during combustion: Part II — Pilot scale observations. Fuel Processing Technology, 89(6), 608–621.CrossRef Vuthaluru, H. B., & French, D. (2008b). Ash chemistry and mineralogy of an Indonesian coal during combustion: Part II — Pilot scale observations. Fuel Processing Technology, 89(6), 608–621.CrossRef
Zurück zum Zitat Wall, T. F., Liu, G. S., Wu, H. W., Roberts, D. G., Benfell, K. E., Gupta, S., et al. (2002). The effect of pressure on coal reactions during pulverized coal combustion and gasification. Progress in Energy and Combustion Science, 28, 405–433.CrossRef Wall, T. F., Liu, G. S., Wu, H. W., Roberts, D. G., Benfell, K. E., Gupta, S., et al. (2002). The effect of pressure on coal reactions during pulverized coal combustion and gasification. Progress in Energy and Combustion Science, 28, 405–433.CrossRef
Zurück zum Zitat Wang, Q., Zhang, L., Sato, A., Ninomiya, Y., & Yamashita, T. (2007). Interactions among inherent minerals during coal combustion and their impacts on the emission of PM10. 1. Emission of micrometer-sized particles. Energy and Fuels, 21(2), 756–765.CrossRef Wang, Q., Zhang, L., Sato, A., Ninomiya, Y., & Yamashita, T. (2007). Interactions among inherent minerals during coal combustion and their impacts on the emission of PM10. 1. Emission of micrometer-sized particles. Energy and Fuels, 21(2), 756–765.CrossRef
Zurück zum Zitat Wigley, F., & Williamson, J. (1998). Modeling fly ash generation for pulverized coal combustion. Energy Combustion and Science, 24, 337–343.CrossRef Wigley, F., & Williamson, J. (1998). Modeling fly ash generation for pulverized coal combustion. Energy Combustion and Science, 24, 337–343.CrossRef
Zurück zum Zitat Wigley, F., Williamson, J., & Gibb, W. H. (1997). The distribution of mineral matter in pulverized coal particles in relation to burnout behavior. Fuel, 76(13), 1283–1288.CrossRef Wigley, F., Williamson, J., & Gibb, W. H. (1997). The distribution of mineral matter in pulverized coal particles in relation to burnout behavior. Fuel, 76(13), 1283–1288.CrossRef
Zurück zum Zitat Wilemski, G., & Srinivasachar, S. (1993). Prediction of ash formation in pulverized coal combustion with mineral distribution and char fragmentation models (pp. 151–164). Proceeding of the engineering foundation conference, England. Wilemski, G., & Srinivasachar, S. (1993). Prediction of ash formation in pulverized coal combustion with mineral distribution and char fragmentation models (pp. 151–164). Proceeding of the engineering foundation conference, England.
Zurück zum Zitat Wilemski, G., Srinivaschar, S., & Sarofim, A. (1992). Modeling of mineral matter redistribution and ash formation in pulverized coal combustion (p. 545). New York: ASME. Wilemski, G., Srinivaschar, S., & Sarofim, A. (1992). Modeling of mineral matter redistribution and ash formation in pulverized coal combustion (p. 545). New York: ASME.
Zurück zum Zitat Wu, C. Y., & Biswas, P. (1998). Study of numerical diffusion in a discrete-sectional model and its application to aerosol dynamics simulation. Aerosol Science and Technology, 29, 359–378.CrossRef Wu, C. Y., & Biswas, P. (1998). Study of numerical diffusion in a discrete-sectional model and its application to aerosol dynamics simulation. Aerosol Science and Technology, 29, 359–378.CrossRef
Zurück zum Zitat Wu, H., Bryant, G., & Wall, T. (2000). The effect of pressure on ash formation during pulverized coal combustion. Energy & Fuels, 14, 745–750.CrossRef Wu, H., Bryant, G., & Wall, T. (2000). The effect of pressure on ash formation during pulverized coal combustion. Energy & Fuels, 14, 745–750.CrossRef
Zurück zum Zitat Wu, H., Wall, T., Liu, G., & Bryant, G. (1999). Ash liberation from included minerals during combustion of pulverized coal: The relationship with char structure and burnout. Energy and Fuels, 13(6), 1197–1202.CrossRef Wu, H., Wall, T., Liu, G., & Bryant, G. (1999). Ash liberation from included minerals during combustion of pulverized coal: The relationship with char structure and burnout. Energy and Fuels, 13(6), 1197–1202.CrossRef
Zurück zum Zitat Yan, L., Gupta, R., & Wall, T. (2001a). The implication of mineral coalescence behavior on ash formation and deposition during pulverized coal combustion. Fuel, 80, 1333–1340.CrossRef Yan, L., Gupta, R., & Wall, T. (2001a). The implication of mineral coalescence behavior on ash formation and deposition during pulverized coal combustion. Fuel, 80, 1333–1340.CrossRef
Zurück zum Zitat Yan, L., Gupta, R., & Wall, T. (2001b). Fragmentation behavior of pyrite and calcite during high-pemperature processing and mathematical simulation. Energy and fuels, 15, 389–394.CrossRef Yan, L., Gupta, R., & Wall, T. (2001b). Fragmentation behavior of pyrite and calcite during high-pemperature processing and mathematical simulation. Energy and fuels, 15, 389–394.CrossRef
Zurück zum Zitat Yu, D., Xu, M., Zhang, L., Yao, H., Wang, Q., & Ninomiya, Y. (2007). Computer-controlled scanning electron microscopy (CCSEM) – Investigation on the heterogeneous nature of mineral matter in six typical Chinese coals. Energy and Fuels, 21(2), 468–476.CrossRef Yu, D., Xu, M., Zhang, L., Yao, H., Wang, Q., & Ninomiya, Y. (2007). Computer-controlled scanning electron microscopy (CCSEM) – Investigation on the heterogeneous nature of mineral matter in six typical Chinese coals. Energy and Fuels, 21(2), 468–476.CrossRef
Zurück zum Zitat Yua, J., Lucasb, J. A., & Wall, T. F. (2007). Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties: A review. Progress in Energy and Combustion Science, 33, 135–170.CrossRef Yua, J., Lucasb, J. A., & Wall, T. F. (2007). Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties: A review. Progress in Energy and Combustion Science, 33, 135–170.CrossRef
Zurück zum Zitat Zeuthe, J. H. (2007). The formation of aerosol particles during combustion of biomass and waste. PhD thesis, The Aerosol Laboratory, Department of Chemical Engineering, Technical University of Denmark, Lyngby. Zeuthe, J. H. (2007). The formation of aerosol particles during combustion of biomass and waste. PhD thesis, The Aerosol Laboratory, Department of Chemical Engineering, Technical University of Denmark, Lyngby.
Zurück zum Zitat Zhaosheng, Y., Xiaoqiana, M., & Aoa, A. (2009). Thermogravimetric analysis of rice and wheat straw catalytic combustion in air- and oxygen-enriched atmospheres. Energy Conversion and Management, 50, 561–566.CrossRef Zhaosheng, Y., Xiaoqiana, M., & Aoa, A. (2009). Thermogravimetric analysis of rice and wheat straw catalytic combustion in air- and oxygen-enriched atmospheres. Energy Conversion and Management, 50, 561–566.CrossRef
Metadaten
Titel
A Review on Ash Formation During Pulverized Fuel Combustion: State of Art and Future Research Needs
verfasst von
Kalpit V. Shah
Mariusz K. Cieplik
Hari B. Vuthaluru
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-17915-5_3