Skip to main content
Erschienen in: Colloid and Polymer Science 9/2013

01.09.2013 | Invited Review

A review on tough and sticky hydrogels

verfasst von: Charles W. Peak, Jonathan J. Wilker, Gudrun Schmidt

Erschienen in: Colloid and Polymer Science | Ausgabe 9/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this review, we survey recent literature (2009–2013) on hydrogels that are mechanically tough and adhesive. The impact of published work and trends in the field are examined. We focus on design concepts, new materials, structures related to mechanical performance and adhesion properties. Besides hydrogels made of individual polymers, concepts developed to toughen hydrogels include interpenetrating and double networks, slide ring polymer gels, topological hydrogels, ionically cross-linked copolymer gels, nanocomposite polymer hydrogels, self-assembled microcomposite hydrogels, and combinations thereof. Hydrogels that are adhesive in addition to tough are also discussed. Adhesive properties, especially wet adhesion of hydrogels, are rare but needed for a variety of general technologies. Some of the most promising industrial applications are found in the areas of sensor and actuator technology, microfluidics, drug delivery and biomedical devices. The most recent accomplishments and creative approaches to making tough and sticky hydrogels are highlighted. This review concludes with perspectives for future directions, challenges and opportunities in a continuously changing world.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Malmsten M (2011) Antimicrobial and antiviral hydrogels. Soft Matter 7:8725–8736CrossRef Malmsten M (2011) Antimicrobial and antiviral hydrogels. Soft Matter 7:8725–8736CrossRef
2.
Zurück zum Zitat Naficy S, Brown HR, Razal JM, Spinks GM, Whitten PG (2011) Progress toward robust polymer hydrogels. Aust J Chem 64:1007–1025CrossRef Naficy S, Brown HR, Razal JM, Spinks GM, Whitten PG (2011) Progress toward robust polymer hydrogels. Aust J Chem 64:1007–1025CrossRef
3.
Zurück zum Zitat Messing R, Schmidt AM (2011) Perspectives for the mechanical manipulation of hybrid hydrogels. Polym Chem 2:18–32CrossRef Messing R, Schmidt AM (2011) Perspectives for the mechanical manipulation of hybrid hydrogels. Polym Chem 2:18–32CrossRef
4.
5.
Zurück zum Zitat D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature, vol. 404, p. 588, Apr 6 2000. D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature, vol. 404, p. 588, Apr 6 2000.
6.
Zurück zum Zitat Dong XL, Wu RA, Dong J, Wu MH, Zhu Y, Zou HF (2009) Recent progress of polar stationary phases in CEC and capillary liquid chromatography. Electrophoresis 30:141–154CrossRef Dong XL, Wu RA, Dong J, Wu MH, Zhu Y, Zou HF (2009) Recent progress of polar stationary phases in CEC and capillary liquid chromatography. Electrophoresis 30:141–154CrossRef
7.
Zurück zum Zitat Hempenius MA, Cirmi C, Lo Savio F, Song J, Vancso GJ (2010) Poly(ferrocenylsilane) gels and hydrogels with redox-controlled actuation. Macromol Rapid Commun 31:772–783CrossRef Hempenius MA, Cirmi C, Lo Savio F, Song J, Vancso GJ (2010) Poly(ferrocenylsilane) gels and hydrogels with redox-controlled actuation. Macromol Rapid Commun 31:772–783CrossRef
8.
Zurück zum Zitat G. Y. Huang, L. H. Zhou, Q. C. Zhang, Y. M. Chen, W. Sun, F. Xu, and T. J. Lu, Microfluidic hydrogels for tissue engineering, Biofabrication, vol. 3, Mar 2011. G. Y. Huang, L. H. Zhou, Q. C. Zhang, Y. M. Chen, W. Sun, F. Xu, and T. J. Lu, Microfluidic hydrogels for tissue engineering, Biofabrication, vol. 3, Mar 2011.
9.
Zurück zum Zitat Allazetta S, Cosson S, Lutolf MP (2011) Programmable microfluidic patterning of protein gradients on hydrogels. Chem Commun 47:191–193CrossRef Allazetta S, Cosson S, Lutolf MP (2011) Programmable microfluidic patterning of protein gradients on hydrogels. Chem Commun 47:191–193CrossRef
10.
Zurück zum Zitat Schneider HJ, Kato K, Strongin RM (2007) Chemomechanical polymers as sensors and actuators for biological and medicinal applications. Sensors 7:1578–1611CrossRef Schneider HJ, Kato K, Strongin RM (2007) Chemomechanical polymers as sensors and actuators for biological and medicinal applications. Sensors 7:1578–1611CrossRef
11.
Zurück zum Zitat Texter J (2009) Templating hydrogels. Colloid Polym Sci 287:313–321CrossRef Texter J (2009) Templating hydrogels. Colloid Polym Sci 287:313–321CrossRef
12.
Zurück zum Zitat Kuckling D (2009) Responsive hydrogel layers—from synthesis to applications. Colloid Polym Sci 287:881–891CrossRef Kuckling D (2009) Responsive hydrogel layers—from synthesis to applications. Colloid Polym Sci 287:881–891CrossRef
13.
Zurück zum Zitat Kim P, Zarzar LD, He XM, Grinthal A, Aizenberg J (2011) Hydrogel-actuated integrated responsive systems (HAIRS): moving towards adaptive materials. Curr Opin Solid State Mater Sci 15:236–245CrossRef Kim P, Zarzar LD, He XM, Grinthal A, Aizenberg J (2011) Hydrogel-actuated integrated responsive systems (HAIRS): moving towards adaptive materials. Curr Opin Solid State Mater Sci 15:236–245CrossRef
14.
Zurück zum Zitat Artzi N, Zeiger A, Boehning F, Ramos AB, van Vliet K, Edelman ER (2011) Tuning adhesion failure strength for tissue-specific applications. Acta Biomaterialia 7:67–74CrossRef Artzi N, Zeiger A, Boehning F, Ramos AB, van Vliet K, Edelman ER (2011) Tuning adhesion failure strength for tissue-specific applications. Acta Biomaterialia 7:67–74CrossRef
15.
Zurück zum Zitat Duarte AP, Coelho JF, Bordado JC, Cidade MT, Gil MH (2012) Surgical adhesives: systematic review of the main types and development forecast. Prog Polym Sci 37:1031–1050CrossRef Duarte AP, Coelho JF, Bordado JC, Cidade MT, Gil MH (2012) Surgical adhesives: systematic review of the main types and development forecast. Prog Polym Sci 37:1031–1050CrossRef
16.
Zurück zum Zitat A. Matsumoto, R. Yoshida, and K. Kataoka, Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH, Biomacromolecules, vol. 5, pp. 1038–1045, May–Jun 2004. A. Matsumoto, R. Yoshida, and K. Kataoka, Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH, Biomacromolecules, vol. 5, pp. 1038–1045, May–Jun 2004.
17.
Zurück zum Zitat Thomas PC, Cipriano BH, Raghavan SR (2011) Nanoparticle-crosslinked hydrogels as a class of efficient materials for separation and ion exchange. Soft Matter 7:8192–8197CrossRef Thomas PC, Cipriano BH, Raghavan SR (2011) Nanoparticle-crosslinked hydrogels as a class of efficient materials for separation and ion exchange. Soft Matter 7:8192–8197CrossRef
18.
Zurück zum Zitat Myung D, Farooqui N, Zheng LL, Koh W, Gupta S, Bakri A, Noolandi J, Cochran JR, Frank CW, Ta CN (2009) Bioactive interpenetrating polymer network hydrogels that support corneal epithelial wound healing. J Biomed Mater Res Part A 90A:70–81CrossRef Myung D, Farooqui N, Zheng LL, Koh W, Gupta S, Bakri A, Noolandi J, Cochran JR, Frank CW, Ta CN (2009) Bioactive interpenetrating polymer network hydrogels that support corneal epithelial wound healing. J Biomed Mater Res Part A 90A:70–81CrossRef
19.
Zurück zum Zitat Huynh CT, Nguyen MK, Lee DS (2011) Injectable block copolymer hydrogels: achievements and future challenges for biomedical applications. Macromolecules 44:6629–6636CrossRef Huynh CT, Nguyen MK, Lee DS (2011) Injectable block copolymer hydrogels: achievements and future challenges for biomedical applications. Macromolecules 44:6629–6636CrossRef
20.
Zurück zum Zitat Petrie EM (2007) Theories of adhesion. In: Patrie EM (ed) Handbook of adhesives and sealants. McGraw-Hill, New York Petrie EM (2007) Theories of adhesion. In: Patrie EM (ed) Handbook of adhesives and sealants. McGraw-Hill, New York
21.
Zurück zum Zitat Pizzi A, Mittal KL (1994) Handbook of adhesive technology. Marcel Dekker Inc., New York Pizzi A, Mittal KL (1994) Handbook of adhesive technology. Marcel Dekker Inc., New York
22.
Zurück zum Zitat Pocius AV (2002) Adhesion and adhesive technology. An introduction. Carl Hanser Verlag, Munich Pocius AV (2002) Adhesion and adhesive technology. An introduction. Carl Hanser Verlag, Munich
23.
Zurück zum Zitat Fitton MD, Broughton IG (2005) Variable modulus adhesives: an approach to optimised joint performance. Int J Adhes Adhes 25:329–336CrossRef Fitton MD, Broughton IG (2005) Variable modulus adhesives: an approach to optimised joint performance. Int J Adhes Adhes 25:329–336CrossRef
24.
Zurück zum Zitat Davies ML, Murphy SM, Hamilton CJ, Tighe BJ (1992) Polymer membranes in clinical sensor applications: 3. Hydrogels as reactive matrix membranes in fiber optic sensors. Biomaterials 13:991–999CrossRef Davies ML, Murphy SM, Hamilton CJ, Tighe BJ (1992) Polymer membranes in clinical sensor applications: 3. Hydrogels as reactive matrix membranes in fiber optic sensors. Biomaterials 13:991–999CrossRef
25.
Zurück zum Zitat Petersen S, Gattermayer M, Biesalski M (2011) Hold on at the right spot: bioactive surfaces for the design of live-cell micropatterns. Bioactive Surfaces 240:35–78CrossRef Petersen S, Gattermayer M, Biesalski M (2011) Hold on at the right spot: bioactive surfaces for the design of live-cell micropatterns. Bioactive Surfaces 240:35–78CrossRef
26.
Zurück zum Zitat Lin CC, Anseth KS (2009) PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res 26:631–643CrossRef Lin CC, Anseth KS (2009) PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res 26:631–643CrossRef
27.
Zurück zum Zitat Park K, Shalaby SWS, Park H (1993) Biodegradable Hydrogels for Drug Delivery. Technomic Publishing, Lancaster, PA Park K, Shalaby SWS, Park H (1993) Biodegradable Hydrogels for Drug Delivery. Technomic Publishing, Lancaster, PA
28.
Zurück zum Zitat S. Chaterji, I. K. Kwon, and K. Park, Smart polymeric gels: redefining the limits of biomedical devices, Progress in Polymer Science, vol. 32, pp. 1083–1122, Aug–Sep 2007. S. Chaterji, I. K. Kwon, and K. Park, Smart polymeric gels: redefining the limits of biomedical devices, Progress in Polymer Science, vol. 32, pp. 1083–1122, Aug–Sep 2007.
29.
Zurück zum Zitat Bird SP, Baker LA (2011) Biologically modified hydrogels for chemical and biochemical analysis. Analyst 136:3410–3418CrossRef Bird SP, Baker LA (2011) Biologically modified hydrogels for chemical and biochemical analysis. Analyst 136:3410–3418CrossRef
30.
Zurück zum Zitat Bait N, Grassl B, Derail C, Benaboura A (2011) Hydrogel nanocomposites as pressure-sensitive adhesives for skin-contact applications. Soft Matter 7:2025–2032CrossRef Bait N, Grassl B, Derail C, Benaboura A (2011) Hydrogel nanocomposites as pressure-sensitive adhesives for skin-contact applications. Soft Matter 7:2025–2032CrossRef
31.
Zurück zum Zitat Peng HT, Shek PN (2010) Novel wound sealants: biomaterials and applications. Expert Rev Med Devices 7:639–659CrossRef Peng HT, Shek PN (2010) Novel wound sealants: biomaterials and applications. Expert Rev Med Devices 7:639–659CrossRef
32.
Zurück zum Zitat Shazly TM, Baker AB, Naber JR, Bon A, Van Vliet KJ, Edelman ER (2010) Augmentation of postswelling surgical sealant potential of adhesive hydrogels. J Biomed Mater Res Part A 95A:1159–1169CrossRef Shazly TM, Baker AB, Naber JR, Bon A, Van Vliet KJ, Edelman ER (2010) Augmentation of postswelling surgical sealant potential of adhesive hydrogels. J Biomed Mater Res Part A 95A:1159–1169CrossRef
33.
Zurück zum Zitat Brubaker CE, Messersmith PB (2011) Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromolecules 12:4326–4334CrossRef Brubaker CE, Messersmith PB (2011) Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromolecules 12:4326–4334CrossRef
35.
Zurück zum Zitat Haque MA, Kurokawa T, Gong JP (2012) Super tough double network hydrogels and their application as biomaterials. Polymer 53:1805–1822CrossRef Haque MA, Kurokawa T, Gong JP (2012) Super tough double network hydrogels and their application as biomaterials. Polymer 53:1805–1822CrossRef
36.
Zurück zum Zitat Okumura Y, Ito K (2001) The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 13:485–487CrossRef Okumura Y, Ito K (2001) The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 13:485–487CrossRef
37.
Zurück zum Zitat Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, Sasaki N, Shibayama M, Chung UI (2008) Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41:5379–5384CrossRef Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, Sasaki N, Shibayama M, Chung UI (2008) Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41:5379–5384CrossRef
38.
Zurück zum Zitat Henderson KJ, Zhou TC, Otim KJ, Shull KR (2010) Ionically cross-linked triblock copolymer hydrogels with high strength. Macromolecules 43:6193–6201CrossRef Henderson KJ, Zhou TC, Otim KJ, Shull KR (2010) Ionically cross-linked triblock copolymer hydrogels with high strength. Macromolecules 43:6193–6201CrossRef
39.
Zurück zum Zitat K. Haraguchi and T. Takehisa, Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties, Advanced Materials, vol. 14, pp. 1120–1124, AUG 16 2002. K. Haraguchi and T. Takehisa, Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties, Advanced Materials, vol. 14, pp. 1120–1124, AUG 16 2002.
40.
Zurück zum Zitat Schexnailder PJ, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287:1–11CrossRef Schexnailder PJ, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287:1–11CrossRef
41.
Zurück zum Zitat Shibayama M (2012) Structure–mechanical property relationship of tough hydrogels. Soft Matter 8:8030–8038CrossRef Shibayama M (2012) Structure–mechanical property relationship of tough hydrogels. Soft Matter 8:8030–8038CrossRef
42.
Zurück zum Zitat Schexnailder P, Loizou E, Porcar L, Butler P, Schmidt G (2009) Heterogeneity in nanocomposite hydrogels from poly(ethylene oxide) cross-linked with silicate nanoparticles. Phys Chem Chem Phys 11:2760–2766CrossRef Schexnailder P, Loizou E, Porcar L, Butler P, Schmidt G (2009) Heterogeneity in nanocomposite hydrogels from poly(ethylene oxide) cross-linked with silicate nanoparticles. Phys Chem Chem Phys 11:2760–2766CrossRef
43.
Zurück zum Zitat Myung D, Waters D, Wiseman M, Duhamel PE, Noolandi J, Ta CN, Frank CW (2008) Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol 19:647–657CrossRef Myung D, Waters D, Wiseman M, Duhamel PE, Noolandi J, Ta CN, Frank CW (2008) Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol 19:647–657CrossRef
44.
Zurück zum Zitat Kopecek J (2009) Hydrogels: from soft contact lenses and implants to self-assembled nanomaterials. J Polym Sci Part a-Polym Chem 47:5929–5946CrossRef Kopecek J (2009) Hydrogels: from soft contact lenses and implants to self-assembled nanomaterials. J Polym Sci Part a-Polym Chem 47:5929–5946CrossRef
45.
Zurück zum Zitat Fisher OZ, Khademhosseini A, Langer R, Peppas NA (2010) Bioinspired materials for controlling stem cell fate. Acc Chem Res 43:419–428CrossRef Fisher OZ, Khademhosseini A, Langer R, Peppas NA (2010) Bioinspired materials for controlling stem cell fate. Acc Chem Res 43:419–428CrossRef
46.
Zurück zum Zitat Buenger D, Topuz F, Groll J (2012) Hydrogels in sensing applications. Prog Polym Sci 37:1678–1719CrossRef Buenger D, Topuz F, Groll J (2012) Hydrogels in sensing applications. Prog Polym Sci 37:1678–1719CrossRef
47.
Zurück zum Zitat Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408CrossRef Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408CrossRef
48.
Zurück zum Zitat Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6:13–22CrossRef Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6:13–22CrossRef
49.
Zurück zum Zitat J. Patterson, M. M. Martino, and J. A. Hubbell, Biomimetic materials in tissue engineering, Materials Today, vol. 13, pp. 14–22, Jan–Feb 2010. J. Patterson, M. M. Martino, and J. A. Hubbell, Biomimetic materials in tissue engineering, Materials Today, vol. 13, pp. 14–22, Jan–Feb 2010.
50.
Zurück zum Zitat Stevens MM, Khademhosseini A (2010) Emerging materials for tissue engineering and regenerative medicine: themed issue for Soft Matter and Journal of Materials Chemistry. Soft Matter 6:4962–4962CrossRef Stevens MM, Khademhosseini A (2010) Emerging materials for tissue engineering and regenerative medicine: themed issue for Soft Matter and Journal of Materials Chemistry. Soft Matter 6:4962–4962CrossRef
51.
Zurück zum Zitat Kloxin AM, Lewis KJR, DeForest CA, Seedorf G, Tibbitt MW, Balasubramaniam V, Anseth KS (2012) Responsive culture platform to examine the influence of microenvironmental geometry on cell function in 3D. Integr Biol 4:1540–1549CrossRef Kloxin AM, Lewis KJR, DeForest CA, Seedorf G, Tibbitt MW, Balasubramaniam V, Anseth KS (2012) Responsive culture platform to examine the influence of microenvironmental geometry on cell function in 3D. Integr Biol 4:1540–1549CrossRef
52.
Zurück zum Zitat Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158CrossRef Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158CrossRef
53.
Zurück zum Zitat Gong JP (2010) Why are double network hydrogels so tough? Soft Matter 6:2583–2590CrossRef Gong JP (2010) Why are double network hydrogels so tough? Soft Matter 6:2583–2590CrossRef
54.
Zurück zum Zitat Brown HR (2007) A model of the fracture of double network gels. Macromolecules 40:3815–3818CrossRef Brown HR (2007) A model of the fracture of double network gels. Macromolecules 40:3815–3818CrossRef
55.
Zurück zum Zitat Webber RE, Creton C, Brown HR, Gong JP (2007) Large strain hysteresis and mullins effect of tough double-network hydrogels. Macromolecules 40:2919–2927CrossRef Webber RE, Creton C, Brown HR, Gong JP (2007) Large strain hysteresis and mullins effect of tough double-network hydrogels. Macromolecules 40:2919–2927CrossRef
56.
Zurück zum Zitat Y. Tanaka, A local damage model for anomalous high toughness of double-network gels, Epl, vol. 78, 2007. Y. Tanaka, A local damage model for anomalous high toughness of double-network gels, Epl, vol. 78, 2007.
57.
Zurück zum Zitat L. Mullins and N. R. Tobin, Stress softening in rubber vulcanizates: I. Use of a strain amplification factor to describe elastic behavior of filler-reinforced vulcanized rubber, Journal of Applied Polymer Science, vol. 9, pp. 2993–, 1965. L. Mullins and N. R. Tobin, Stress softening in rubber vulcanizates: I. Use of a strain amplification factor to describe elastic behavior of filler-reinforced vulcanized rubber, Journal of Applied Polymer Science, vol. 9, pp. 2993–, 1965.
58.
Zurück zum Zitat Ito K (2012) Novel entropic elasticity of polymeric materials: why is slide-ring gel so soft? Polym J 44:38–41CrossRef Ito K (2012) Novel entropic elasticity of polymeric materials: why is slide-ring gel so soft? Polym J 44:38–41CrossRef
59.
Zurück zum Zitat Tirumala VR, Tominaga T, Lee S, Butler PD, Lin EK, Gong JP, Wu WL (2008) Molecular model for toughening in double-network hydrogels. J Phys Chem B 112:8024–8031CrossRef Tirumala VR, Tominaga T, Lee S, Butler PD, Lin EK, Gong JP, Wu WL (2008) Molecular model for toughening in double-network hydrogels. J Phys Chem B 112:8024–8031CrossRef
60.
Zurück zum Zitat Baumberger T, Caroli C, Martina D (2006) Solvent control of crack dynamics in a reversible hydrogel. Nat Mater 5:552–555CrossRef Baumberger T, Caroli C, Martina D (2006) Solvent control of crack dynamics in a reversible hydrogel. Nat Mater 5:552–555CrossRef
61.
Zurück zum Zitat Okumura K (2004) Toughness of double elastic networks. Europhys Lett 67:470–476CrossRef Okumura K (2004) Toughness of double elastic networks. Europhys Lett 67:470–476CrossRef
62.
Zurück zum Zitat Kishi R, Hiroki K, Tominaga T, Sano KI, Okuzaki H, Martinez JG, Otero TF, Osada Y (2012) Electro-conductive double-network hydrogels. J Polymer Sci, Part B: Polymer Phys 50:790–796CrossRef Kishi R, Hiroki K, Tominaga T, Sano KI, Okuzaki H, Martinez JG, Otero TF, Osada Y (2012) Electro-conductive double-network hydrogels. J Polymer Sci, Part B: Polymer Phys 50:790–796CrossRef
63.
Zurück zum Zitat Cui J, Lackey MA, Madkour AE, Saffer EM, Griffin DM, Bhatia SR, Crosby AJ, Tew GN (2012) Synthetically simple, highly resilient hydrogels. Biomacromolecules 13:584–588CrossRef Cui J, Lackey MA, Madkour AE, Saffer EM, Griffin DM, Bhatia SR, Crosby AJ, Tew GN (2012) Synthetically simple, highly resilient hydrogels. Biomacromolecules 13:584–588CrossRef
64.
Zurück zum Zitat Cui J, Lackey MA, Tew GN, Crosby AJ (2012) Mechanical properties of end-linked PEG/PDMS hydrogels. Macromolecules 45:6104–6110CrossRef Cui J, Lackey MA, Tew GN, Crosby AJ (2012) Mechanical properties of end-linked PEG/PDMS hydrogels. Macromolecules 45:6104–6110CrossRef
65.
Zurück zum Zitat Zhang XY, Guo XL, Yang SG, Tan SX, Li XF, Dai HJ, Yu XL, Zhang XL, Weng N, Jian B, Xu J (2009) Double-network hydrogel with high mechanical strength prepared from two biocompatible polymers. J Appl Polym Sci 112:3063–3070CrossRef Zhang XY, Guo XL, Yang SG, Tan SX, Li XF, Dai HJ, Yu XL, Zhang XL, Weng N, Jian B, Xu J (2009) Double-network hydrogel with high mechanical strength prepared from two biocompatible polymers. J Appl Polym Sci 112:3063–3070CrossRef
66.
Zurück zum Zitat Harrass K, Kruger R, Moller M, Albrecht K, Groll J (2013) Mechanically strong hydrogels with reversible behaviour under cyclic compression with MPa loading. Soft Matter 9:2869–2877CrossRef Harrass K, Kruger R, Moller M, Albrecht K, Groll J (2013) Mechanically strong hydrogels with reversible behaviour under cyclic compression with MPa loading. Soft Matter 9:2869–2877CrossRef
67.
Zurück zum Zitat Rakovsky A, Marbach D, Lotan N, Lanir Y (2009) Poly(ethylene glycol)-based hydrogels as cartilage substitutes: synthesis and mechanical characteristics. J Appl Polym Sci 112:390–401CrossRef Rakovsky A, Marbach D, Lotan N, Lanir Y (2009) Poly(ethylene glycol)-based hydrogels as cartilage substitutes: synthesis and mechanical characteristics. J Appl Polym Sci 112:390–401CrossRef
68.
Zurück zum Zitat Brigham MD, Bick A, Lo E, Bendali A, Burdick JA, Khademhosseini A (2009) Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks. Tissue Eng Part A 15:1645–1653CrossRef Brigham MD, Bick A, Lo E, Bendali A, Burdick JA, Khademhosseini A (2009) Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks. Tissue Eng Part A 15:1645–1653CrossRef
69.
Zurück zum Zitat Liu YX, Chan-Park MB (2009) Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials 30:196–207CrossRef Liu YX, Chan-Park MB (2009) Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials 30:196–207CrossRef
70.
Zurück zum Zitat DeKosky BJ, Dormer NH, Ingavle GC, Roatch CH, Lomakin J, Detamore MS, Gehrke SH (2010) Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering. Tissue Eng Part C-Methods 16:1533–1542CrossRef DeKosky BJ, Dormer NH, Ingavle GC, Roatch CH, Lomakin J, Detamore MS, Gehrke SH (2010) Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering. Tissue Eng Part C-Methods 16:1533–1542CrossRef
71.
Zurück zum Zitat Chan BK, Wippich CC, Wu CJ, Sivasankar PM, Schmidt G (2012) Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds. Macromol Biosci 12:1490–1501CrossRef Chan BK, Wippich CC, Wu CJ, Sivasankar PM, Schmidt G (2012) Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds. Macromol Biosci 12:1490–1501CrossRef
72.
Zurück zum Zitat Wang XZ, Wang HL, Brown HR (2011) Jellyfish gel and its hybrid hydrogels with high mechanical strength. Soft Matter 7:211–219CrossRef Wang XZ, Wang HL, Brown HR (2011) Jellyfish gel and its hybrid hydrogels with high mechanical strength. Soft Matter 7:211–219CrossRef
73.
Zurück zum Zitat Shull KR (2012) Materials science: a hard concept in soft matter. Nature 489:36–37CrossRef Shull KR (2012) Materials science: a hard concept in soft matter. Nature 489:36–37CrossRef
74.
Zurück zum Zitat Sun JY, Zhao XH, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo ZG (2012) Highly stretchable and tough hydrogels. Nature 489:133–136CrossRef Sun JY, Zhao XH, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo ZG (2012) Highly stretchable and tough hydrogels. Nature 489:133–136CrossRef
75.
Zurück zum Zitat Tuncaboylu DC, Sari M, Oppermann W, Okay O (2011) Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules 44:4997–5005CrossRef Tuncaboylu DC, Sari M, Oppermann W, Okay O (2011) Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules 44:4997–5005CrossRef
76.
Zurück zum Zitat P. Manandhar, P. D. Calvert, and J. R. Buck, Elastomeric ionic hydrogel sensor for large strains, IEEE Sensors Journal, vol. 12, Jun 2012. P. Manandhar, P. D. Calvert, and J. R. Buck, Elastomeric ionic hydrogel sensor for large strains, IEEE Sensors Journal, vol. 12, Jun 2012.
77.
Zurück zum Zitat Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T (2010) High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463:339–343CrossRef Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T (2010) High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463:339–343CrossRef
78.
Zurück zum Zitat Lin HR, Ling MH, Lin YJ (2009) High strength and low friction of a PAA–alginate–silica hydrogel as potential material for artificial soft tissues. J Biomater Sci Polym Ed 20:637–652CrossRef Lin HR, Ling MH, Lin YJ (2009) High strength and low friction of a PAA–alginate–silica hydrogel as potential material for artificial soft tissues. J Biomater Sci Polym Ed 20:637–652CrossRef
79.
Zurück zum Zitat D. W. Thompson and J. T. Butterworth, The nature of laponite and its aqueous dispersions, Journal of Colloid and Interface Science, vol. 151, pp. 236–243, JUN 1992. D. W. Thompson and J. T. Butterworth, The nature of laponite and its aqueous dispersions, Journal of Colloid and Interface Science, vol. 151, pp. 236–243, JUN 1992.
80.
Zurück zum Zitat H. Tanaka, S. Jabbari-Farouji, J. Meunier, and D. Bonn, Kinetics of ergodic-to-nonergodic transitions in charged colloidal suspensions: Aging and gelation, Physical Review E, vol. 71, Feb 2005. H. Tanaka, S. Jabbari-Farouji, J. Meunier, and D. Bonn, Kinetics of ergodic-to-nonergodic transitions in charged colloidal suspensions: Aging and gelation, Physical Review E, vol. 71, Feb 2005.
81.
Zurück zum Zitat H. Tanaka, J. Meunier, and D. Bonn, Nonergodic states of charged colloidal suspensions: repulsive and attractive glasses and gels, Physical Review E, vol. 69, Mar 2004. H. Tanaka, J. Meunier, and D. Bonn, Nonergodic states of charged colloidal suspensions: repulsive and attractive glasses and gels, Physical Review E, vol. 69, Mar 2004.
82.
Zurück zum Zitat Haraguchi K (2011) Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures. Polym J 43:223–241CrossRef Haraguchi K (2011) Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures. Polym J 43:223–241CrossRef
83.
Zurück zum Zitat T. Nishida, H. Endo, N. Osaka, H. Li, K. Haraguchi, and M. Shibayama, Deformation mechanism of nanocomposite gels studied by contrast variation small-angle neutron scattering, Physical Review E, vol. 80, Sep 2009. T. Nishida, H. Endo, N. Osaka, H. Li, K. Haraguchi, and M. Shibayama, Deformation mechanism of nanocomposite gels studied by contrast variation small-angle neutron scattering, Physical Review E, vol. 80, Sep 2009.
84.
Zurück zum Zitat Ren HY, Zhu MF, Haraguchi K (2012) Effects of counter ions of clay platelets on the swelling behavior of nanocomposite gels. J Colloid Interface Sci 375:134–141CrossRef Ren HY, Zhu MF, Haraguchi K (2012) Effects of counter ions of clay platelets on the swelling behavior of nanocomposite gels. J Colloid Interface Sci 375:134–141CrossRef
85.
Zurück zum Zitat H. Furukawa, K. Horie, R. Nozaki, and M. Okada, Swelling-induced modulation of static and dynamic fluctuations in polyacrylamide gels observed by scanning microscopic light scattering, Physical Review E, vol. 68, Sep 2003. H. Furukawa, K. Horie, R. Nozaki, and M. Okada, Swelling-induced modulation of static and dynamic fluctuations in polyacrylamide gels observed by scanning microscopic light scattering, Physical Review E, vol. 68, Sep 2003.
86.
Zurück zum Zitat Wu CJ, Gaharwar AK, Chan BK, Schmidt G (2011) Mechanically tough pluronic F127/Laponite nanocomposite hydrogels from covalently and physically cross-linked Networks. Macromolecules 44:8215–8224CrossRef Wu CJ, Gaharwar AK, Chan BK, Schmidt G (2011) Mechanically tough pluronic F127/Laponite nanocomposite hydrogels from covalently and physically cross-linked Networks. Macromolecules 44:8215–8224CrossRef
87.
Zurück zum Zitat Gaharwar AK, Rivera CP, Wu CJ, Schmidt G (2011) Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomater 7:4139–4148CrossRef Gaharwar AK, Rivera CP, Wu CJ, Schmidt G (2011) Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomater 7:4139–4148CrossRef
88.
Zurück zum Zitat Wu C-J, Wilker JJ, Schmidt G (2013) Robust and adhesive hydrogels from cross-linked poly(ethylene glycol) and silicate for biomedical use. Macromol Biosci 13:59–66CrossRef Wu C-J, Wilker JJ, Schmidt G (2013) Robust and adhesive hydrogels from cross-linked poly(ethylene glycol) and silicate for biomedical use. Macromol Biosci 13:59–66CrossRef
89.
Zurück zum Zitat Gaharwar AK, Dammu SA, Canter JM, Wu CJ, Schmidt G (2011) Highly Extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles. Biomacromolecules 12:1641–1650CrossRef Gaharwar AK, Dammu SA, Canter JM, Wu CJ, Schmidt G (2011) Highly Extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles. Biomacromolecules 12:1641–1650CrossRef
90.
Zurück zum Zitat Lin WC, Marcellan A, Hourdet D, Creton C (2011) Effect of polymer–particle interaction on the fracture toughness of silica filled hydrogels. Soft Matter 7:6578–6582CrossRef Lin WC, Marcellan A, Hourdet D, Creton C (2011) Effect of polymer–particle interaction on the fracture toughness of silica filled hydrogels. Soft Matter 7:6578–6582CrossRef
91.
Zurück zum Zitat G. J. Lake and A. G. Thomas, Strength of highly elastic materials, Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, vol. 300, pp. 108–, 1967. G. J. Lake and A. G. Thomas, Strength of highly elastic materials, Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, vol. 300, pp. 108–, 1967.
92.
Zurück zum Zitat Wang Q, Hou RX, Cheng YJ, Fu J (2012) Super-tough double-network hydrogels reinforced by covalently compositing with silica-nanoparticles. Soft Matter 8:6048–6056CrossRef Wang Q, Hou RX, Cheng YJ, Fu J (2012) Super-tough double-network hydrogels reinforced by covalently compositing with silica-nanoparticles. Soft Matter 8:6048–6056CrossRef
93.
Zurück zum Zitat Liu JQ, Chen CF, He CC, Zhao L, Yang XJ, Wang HL (2012) Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels. ACS Nano 6:8194–8202CrossRef Liu JQ, Chen CF, He CC, Zhao L, Yang XJ, Wang HL (2012) Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels. ACS Nano 6:8194–8202CrossRef
94.
Zurück zum Zitat Qin XP, Zhao F, Liu YK, Wang HY, Feng SY (2009) High mechanical strength hydrogels preparation using hydrophilic reactive microgels as crosslinking agents. Colloid Polym Sci 287:621–625CrossRef Qin XP, Zhao F, Liu YK, Wang HY, Feng SY (2009) High mechanical strength hydrogels preparation using hydrophilic reactive microgels as crosslinking agents. Colloid Polym Sci 287:621–625CrossRef
95.
Zurück zum Zitat T. Huang, H. G. Xu, K. X. Jiao, L. P. Zhu, H. R. Brown, and H. L. Wang, A novel hydrogel with high mechanical strength: A macromolecular microsphere composite hydrogel, Advanced Materials, vol. 19, pp. 1622–, Jun 18 2007. T. Huang, H. G. Xu, K. X. Jiao, L. P. Zhu, H. R. Brown, and H. L. Wang, A novel hydrogel with high mechanical strength: A macromolecular microsphere composite hydrogel, Advanced Materials, vol. 19, pp. 1622–, Jun 18 2007.
96.
Zurück zum Zitat Xia LW, Ju XJ, Liu JJ, Xie R, Chu LY (2010) Responsive hydrogels with poly(N-isopropylacrylamide-co-acrylic acid) colloidal spheres as building blocks. J Colloid Interface Sci 349:106–113CrossRef Xia LW, Ju XJ, Liu JJ, Xie R, Chu LY (2010) Responsive hydrogels with poly(N-isopropylacrylamide-co-acrylic acid) colloidal spheres as building blocks. J Colloid Interface Sci 349:106–113CrossRef
97.
Zurück zum Zitat Xu K, Tan Y, Chen Q, An HY, Li WB, Dong LS, Wang PX (2010) A novel multi-responsive polyampholyte composite hydrogel with excellent mechanical strength and rapid shrinking rate. J Colloid Interface Sci 345:360–368CrossRef Xu K, Tan Y, Chen Q, An HY, Li WB, Dong LS, Wang PX (2010) A novel multi-responsive polyampholyte composite hydrogel with excellent mechanical strength and rapid shrinking rate. J Colloid Interface Sci 345:360–368CrossRef
98.
Zurück zum Zitat Hu J, Kurokawa T, Hiwatashi K, Nakajima T, Wu ZL, Liang SM, Gong JP (2012) Structure optimization and mechanical model for microgel-reinforced hydrogels with high strength and toughness. Macromolecules 45:5218–5228CrossRef Hu J, Kurokawa T, Hiwatashi K, Nakajima T, Wu ZL, Liang SM, Gong JP (2012) Structure optimization and mechanical model for microgel-reinforced hydrogels with high strength and toughness. Macromolecules 45:5218–5228CrossRef
99.
Zurück zum Zitat Meid J, Dierkes F, Cui J, Messing R, Crosby AJ, Schmidt A, Richtering W (2012) Mechanical properties of temperature sensitive microgel/polyacrylamide composite hydrogels-from soft to hard fillers. Soft Matter 8:4254–4263CrossRef Meid J, Dierkes F, Cui J, Messing R, Crosby AJ, Schmidt A, Richtering W (2012) Mechanical properties of temperature sensitive microgel/polyacrylamide composite hydrogels-from soft to hard fillers. Soft Matter 8:4254–4263CrossRef
100.
Zurück zum Zitat Meid J, Friedrich T, Tieke B, Lindner P, Richtering W (2011) Composite hydrogels with temperature sensitive heterogeneities: influence of gel matrix on the volume phase transition of embedded poly-(N-isopropylacrylamide) microgels. Phys Chem Chem Phys 13:3039–3047CrossRef Meid J, Friedrich T, Tieke B, Lindner P, Richtering W (2011) Composite hydrogels with temperature sensitive heterogeneities: influence of gel matrix on the volume phase transition of embedded poly-(N-isopropylacrylamide) microgels. Phys Chem Chem Phys 13:3039–3047CrossRef
101.
Zurück zum Zitat Lehmann S, Seiffert S, Richtering W (2012) Spatially resolved tracer diffusion in complex responsive hydrogels. J Am Chem Soc 134:15963–15969CrossRef Lehmann S, Seiffert S, Richtering W (2012) Spatially resolved tracer diffusion in complex responsive hydrogels. J Am Chem Soc 134:15963–15969CrossRef
102.
Zurück zum Zitat Harada A, Hashidzume A, Yamaguchi H, Takashima Y (2009) Polymeric rotaxanes. Chem Rev 109:5974–6023CrossRef Harada A, Hashidzume A, Yamaguchi H, Takashima Y (2009) Polymeric rotaxanes. Chem Rev 109:5974–6023CrossRef
103.
Zurück zum Zitat Kato K, Komatsu H, Ito K (2010) A versatile synthesis of diverse polyrotaxanes with a dual role of cyclodextrin as both the cyclic and capping components. Macromolecules 43:8799–8804CrossRef Kato K, Komatsu H, Ito K (2010) A versatile synthesis of diverse polyrotaxanes with a dual role of cyclodextrin as both the cyclic and capping components. Macromolecules 43:8799–8804CrossRef
104.
Zurück zum Zitat Kato K, Inoue K, Kidowaki M, Ito K (2009) Organic–inorganic hybrid slide-ring gels: polyrotaxanes consisting of poly(dimethylsiloxane) and gamma-cyclodextrin and subsequent topological cross-linking. Macromolecules 42:7129–7136CrossRef Kato K, Inoue K, Kidowaki M, Ito K (2009) Organic–inorganic hybrid slide-ring gels: polyrotaxanes consisting of poly(dimethylsiloxane) and gamma-cyclodextrin and subsequent topological cross-linking. Macromolecules 42:7129–7136CrossRef
105.
Zurück zum Zitat Matsunaga T, Sakai T, Akagi Y, Chung U, Shibayama M (2009) Structure Characterization of tetra-PEG gel by small-angle neutron scattering. Macromolecules 42:1344–1351CrossRef Matsunaga T, Sakai T, Akagi Y, Chung U, Shibayama M (2009) Structure Characterization of tetra-PEG gel by small-angle neutron scattering. Macromolecules 42:1344–1351CrossRef
106.
Zurück zum Zitat Akagi Y, Matsunaga T, Shibayama M, Chung U, Sakai T (2010) Evaluation of topological defects in tetra-PEG gels. Macromolecules 43:488–493CrossRef Akagi Y, Matsunaga T, Shibayama M, Chung U, Sakai T (2010) Evaluation of topological defects in tetra-PEG gels. Macromolecules 43:488–493CrossRef
107.
Zurück zum Zitat Matsunaga T, Sakai T, Akagi Y, Chung UI, Shibayama M (2009) SANS and SLS Studies on tetra-arm PEG Gels in as-prepared and swollen states. Macromolecules 42:6245–6252CrossRef Matsunaga T, Sakai T, Akagi Y, Chung UI, Shibayama M (2009) SANS and SLS Studies on tetra-arm PEG Gels in as-prepared and swollen states. Macromolecules 42:6245–6252CrossRef
108.
Zurück zum Zitat Abdurrahmanoglu S, Can V, Okay O (2009) Design of high-toughness polyacrylamide hydrogels by hydrophobic modification. Polymer 50:5449–5455CrossRef Abdurrahmanoglu S, Can V, Okay O (2009) Design of high-toughness polyacrylamide hydrogels by hydrophobic modification. Polymer 50:5449–5455CrossRef
109.
Zurück zum Zitat Friedrich T, Tieke B, Stadler FJ, Bailly C (2011) Improvement of elasticity and strength of poly(N-isopropylacrylamide) hydrogels upon copolymerization with cationic surfmers. Soft Matter 7:6590–6597CrossRef Friedrich T, Tieke B, Stadler FJ, Bailly C (2011) Improvement of elasticity and strength of poly(N-isopropylacrylamide) hydrogels upon copolymerization with cationic surfmers. Soft Matter 7:6590–6597CrossRef
110.
Zurück zum Zitat Thomas JD, Fussell G, Sarkar S, Lowman AM, Marcolongo M (2010) Synthesis and recovery characteristics of branched and grafted PNIPAAm-PEG hydrogels for the development of an injectable load-bearing nucleus pulposus replacement. Acta Biomater 6:1319–1328CrossRef Thomas JD, Fussell G, Sarkar S, Lowman AM, Marcolongo M (2010) Synthesis and recovery characteristics of branched and grafted PNIPAAm-PEG hydrogels for the development of an injectable load-bearing nucleus pulposus replacement. Acta Biomater 6:1319–1328CrossRef
111.
Zurück zum Zitat Wang M, Kornfield JA (2012) Measuring shear strength of soft-tissue adhesives. J Biomed Mater Res Part B-Appl Biomater 100B:618–623CrossRef Wang M, Kornfield JA (2012) Measuring shear strength of soft-tissue adhesives. J Biomed Mater Res Part B-Appl Biomater 100B:618–623CrossRef
112.
Zurück zum Zitat Mintzer MA, Grinstaff MW (2011) Biomedical applications of dendrimers: a tutorial. Chem Soc Rev 40:173–190CrossRef Mintzer MA, Grinstaff MW (2011) Biomedical applications of dendrimers: a tutorial. Chem Soc Rev 40:173–190CrossRef
113.
Zurück zum Zitat Oelker AM, Berlin JA, Wathier M, Grinstaff MW (2011) Synthesis and characterization of dendron cross-linked PEG Hydrogels as corneal adhesives. Biomacromolecules 12:1658–1665CrossRef Oelker AM, Berlin JA, Wathier M, Grinstaff MW (2011) Synthesis and characterization of dendron cross-linked PEG Hydrogels as corneal adhesives. Biomacromolecules 12:1658–1665CrossRef
114.
Zurück zum Zitat M. Wathier and M. W. Grinstaff, Hydrogel sealants for wound repair in ophthalmic surgery, Biomaterials and Regenerative Medicine in Ophthalmology, pp. 411–432, 2009. M. Wathier and M. W. Grinstaff, Hydrogel sealants for wound repair in ophthalmic surgery, Biomaterials and Regenerative Medicine in Ophthalmology, pp. 411–432, 2009.
115.
Zurück zum Zitat Sedo J, Saiz-Poseu J, Busque F, Ruiz-Molina D (2013) Catechol-based biomimetic functional materials. Adv Mater 25:653–701CrossRef Sedo J, Saiz-Poseu J, Busque F, Ruiz-Molina D (2013) Catechol-based biomimetic functional materials. Adv Mater 25:653–701CrossRef
116.
Zurück zum Zitat Wilker JJ (2010) Marine bioinorganic materials: mussels pumping iron. Curr Opin Chem Biol 14:276–283CrossRef Wilker JJ (2010) Marine bioinorganic materials: mussels pumping iron. Curr Opin Chem Biol 14:276–283CrossRef
117.
Zurück zum Zitat Wilker JJ (2010) The iron-fortified adhesive system of marine mussels. Angew Chem Int Ed 49:8076–8078CrossRef Wilker JJ (2010) The iron-fortified adhesive system of marine mussels. Angew Chem Int Ed 49:8076–8078CrossRef
118.
Zurück zum Zitat Wilker JJ (2011) Biomaterials: Redox and adhesion on the rocks. Nat Chem Biol 7:579–580CrossRef Wilker JJ (2011) Biomaterials: Redox and adhesion on the rocks. Nat Chem Biol 7:579–580CrossRef
119.
Zurück zum Zitat Mehdizadeh M, Weng H, Gyawali D, Tang LP, Yang J (2012) Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials 33:7972–7983CrossRef Mehdizadeh M, Weng H, Gyawali D, Tang LP, Yang J (2012) Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials 33:7972–7983CrossRef
120.
Zurück zum Zitat Brubaker CE, Kissler H, Wang LJ, Kaufman DB, Messersmith PB (2010) Biological performance of mussel-inspired adhesive in extrahepatic islet transplantation. Biomaterials 31:420–427CrossRef Brubaker CE, Kissler H, Wang LJ, Kaufman DB, Messersmith PB (2010) Biological performance of mussel-inspired adhesive in extrahepatic islet transplantation. Biomaterials 31:420–427CrossRef
121.
Zurück zum Zitat Haller CM, Buerzle W, Brubaker CE, Messersmith PB, Mazza E, Ochsenbein-Koelble N, Zimmermann R, Ehrbar M (2011) Mussel-mimetic tissue adhesive for fetal membrane repair: a standardized ex vivo evaluation using elastomeric membranes. Prenat Diagn 31:654–660CrossRef Haller CM, Buerzle W, Brubaker CE, Messersmith PB, Mazza E, Ochsenbein-Koelble N, Zimmermann R, Ehrbar M (2011) Mussel-mimetic tissue adhesive for fetal membrane repair: a standardized ex vivo evaluation using elastomeric membranes. Prenat Diagn 31:654–660CrossRef
122.
Zurück zum Zitat Brubaker CE, Messersmith PB (2012) The present and future of biologically inspired adhesive interfaces and materials. Langmuir 28:2200–2205CrossRef Brubaker CE, Messersmith PB (2012) The present and future of biologically inspired adhesive interfaces and materials. Langmuir 28:2200–2205CrossRef
123.
Zurück zum Zitat D. J. Barrett, G. G. Bushnell, and P. B. Messersmith, Mechanically robust, negative-swelling, mussel-inspired tissue adhesive, Advanced Healthcare Materials, vol. DOI: 10.1001/adhm.201200316, 2012. D. J. Barrett, G. G. Bushnell, and P. B. Messersmith, Mechanically robust, negative-swelling, mussel-inspired tissue adhesive, Advanced Healthcare Materials, vol. DOI: 10.​1001/​adhm.​201200316, 2012.
124.
Zurück zum Zitat Kaur S, Weerasekare GM, Stewart RJ (2011) Multiphase Adhesive coacervates inspired by the sandcastle worm. ACS Appl Mater Interfaces 3:941–944CrossRef Kaur S, Weerasekare GM, Stewart RJ (2011) Multiphase Adhesive coacervates inspired by the sandcastle worm. ACS Appl Mater Interfaces 3:941–944CrossRef
125.
Zurück zum Zitat H. Shao and R. J. Stewart, Biomimetic underwater adhesives with environmentally triggered setting mechanisms, Advanced Materials, vol. 22, pp. 729–+, Feb 9 2010. H. Shao and R. J. Stewart, Biomimetic underwater adhesives with environmentally triggered setting mechanisms, Advanced Materials, vol. 22, pp. 729–+, Feb 9 2010.
126.
Zurück zum Zitat Shao H, Bachus KN, Stewart RJ (2009) A water-borne adhesive modeled after the sandcastle glue of P-californica. Macromol Biosci 9:464–471CrossRef Shao H, Bachus KN, Stewart RJ (2009) A water-borne adhesive modeled after the sandcastle glue of P-californica. Macromol Biosci 9:464–471CrossRef
127.
Zurück zum Zitat Strehin I, Nahas Z, Arora K, Nguyen T, Elisseeff J (2010) A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel. Biomaterials 31:2788–2797CrossRef Strehin I, Nahas Z, Arora K, Nguyen T, Elisseeff J (2010) A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel. Biomaterials 31:2788–2797CrossRef
128.
Zurück zum Zitat Simson J, Crist J, Strehin I, Lu QZ, Elisseeff JH (2013) An orthopedic tissue adhesive for targeted delivery of intraoperative biologics. J Orthop Res 31:392–400CrossRef Simson J, Crist J, Strehin I, Lu QZ, Elisseeff JH (2013) An orthopedic tissue adhesive for targeted delivery of intraoperative biologics. J Orthop Res 31:392–400CrossRef
129.
Zurück zum Zitat Amoozgar Z, Rickett T, Park J, Tuchek C, Shi RY, Yeo Y (2012) Semi-interpenetrating network of polyethylene glycol and photocrosslinkable chitosan as an in-situ-forming nerve adhesive. Acta Biomater 8:1849–1858CrossRef Amoozgar Z, Rickett T, Park J, Tuchek C, Shi RY, Yeo Y (2012) Semi-interpenetrating network of polyethylene glycol and photocrosslinkable chitosan as an in-situ-forming nerve adhesive. Acta Biomater 8:1849–1858CrossRef
130.
Zurück zum Zitat Arunbabu D, Shahsavan H, Zhang W, Zhao BX (2013) Poly(AAc-co-MBA) hydrogel films: adhesive and mechanical properties in aqueous medium. J Phys Chem B 117:441–449CrossRef Arunbabu D, Shahsavan H, Zhang W, Zhao BX (2013) Poly(AAc-co-MBA) hydrogel films: adhesive and mechanical properties in aqueous medium. J Phys Chem B 117:441–449CrossRef
131.
Zurück zum Zitat Iyer BVS, Salib IG, Yashin VV, Kowalewski T, Matyjaszewski K, Balazs AC (2013) Modeling the response of dual cross-linked nanoparticle networks to mechanical deformation. Soft Matter 9:109–121CrossRef Iyer BVS, Salib IG, Yashin VV, Kowalewski T, Matyjaszewski K, Balazs AC (2013) Modeling the response of dual cross-linked nanoparticle networks to mechanical deformation. Soft Matter 9:109–121CrossRef
132.
Zurück zum Zitat Calvo-Marzal P, Delaney MP, Auletta, JT, Pan T, Perri NM, Weiland LM, Waldeck DH, Clark WW, Meyer TY (2012) Manipulating mechanical properties with electricity: Electroplastic elastomer hydrogels. ACS Macro Letters 1:204–208 Calvo-Marzal P, Delaney MP, Auletta, JT, Pan T, Perri NM, Weiland LM, Waldeck DH, Clark WW, Meyer TY (2012) Manipulating mechanical properties with electricity: Electroplastic elastomer hydrogels. ACS Macro Letters 1:204–208
Metadaten
Titel
A review on tough and sticky hydrogels
verfasst von
Charles W. Peak
Jonathan J. Wilker
Gudrun Schmidt
Publikationsdatum
01.09.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Colloid and Polymer Science / Ausgabe 9/2013
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-013-3021-y

Weitere Artikel der Ausgabe 9/2013

Colloid and Polymer Science 9/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.