Skip to main content
Erschienen in: Journal of Materials Science 2/2019

26.09.2018 | Chemical routes to materials

A robust 3D superhydrophobic sponge for in situ continuous oil removing

verfasst von: Huicai Wang, Jibin Yang, Xiaping Liu, Zhongan Tao, Zhenwen Wang, Ruirui Yue

Erschienen in: Journal of Materials Science | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A variety of materials with superwetting property are fabricated for separation of immiscible oils/organic solvents and water mixture. However, the complex fabrication process, requirement of sophisticated equipment, and associated toxicity strongly limit the development of the superwetting materials. In this paper, a simple two-step dip coating strategy is demonstrated to prepare polydopamine-octadecanethiol modified 3D porous sponge with superhydrophobic and superoleophilic properties (a water contact angle of 156.8° ± 2.5° and an oil contact angle of nearly 0°) through the combination of enhanced surface roughness and low surface energy coating for separation of oil/water mixture. The as-prepared superhydrophobic sponges possess high porosity (greater than 99.2%), low density (below 10 mg/cm3), and 3D porous network structure, which meet well with the needs for adsorption of the actual oil pollutions. More importantly, in situ continuous removal of oil from oil/water mixture is successfully accomplished via a vacuum-assisted system, even in the corrosive environments including turbulent situation, heat, acidic, alkaline, seawater, and glacial water. The continuous oil collection system could avoid the limit in adsorption saturation effectively. We believe that the superhydrophobic sponge with easy large-scale production, economical, and environmentally friendly characteristics can be a superior candidate for the treatment of oily wastewater and practical oil spill accidents.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kujawinski EB, Soule MCK, Valentine DL, Boysen AK, Longnecker K, Redmond MC (2011) Fate of dispersants associated with the deepwater horizon oil spill. Environ Sci Technol 45:1298–1306CrossRef Kujawinski EB, Soule MCK, Valentine DL, Boysen AK, Longnecker K, Redmond MC (2011) Fate of dispersants associated with the deepwater horizon oil spill. Environ Sci Technol 45:1298–1306CrossRef
2.
Zurück zum Zitat Li HL, Boufadel MC (2010) Long-term persistence of oil from the Exxon Valdez spill in two-layer beaches. Nat Geosci 3:96–99CrossRef Li HL, Boufadel MC (2010) Long-term persistence of oil from the Exxon Valdez spill in two-layer beaches. Nat Geosci 3:96–99CrossRef
3.
4.
Zurück zum Zitat Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310CrossRef Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310CrossRef
5.
Zurück zum Zitat Elliott JE, Elliott KH (2013) Environmental science. Tracking marine pollution. Science 340:556–558CrossRef Elliott JE, Elliott KH (2013) Environmental science. Tracking marine pollution. Science 340:556–558CrossRef
6.
Zurück zum Zitat Bennett B, Jiang C, Snowdon LR, Larter SR (2014) A practical method for the separation of high quality heavy oil and bitumen samples from oil reservoir cores for physical and chemical property determination. Fuel 116:208–213CrossRef Bennett B, Jiang C, Snowdon LR, Larter SR (2014) A practical method for the separation of high quality heavy oil and bitumen samples from oil reservoir cores for physical and chemical property determination. Fuel 116:208–213CrossRef
7.
Zurück zum Zitat Broje V, Keller AA (2006) Improved mechanical oil spill recovery using an optimized geometry for the skimmer surface. Environ Sci Technol 40:7914–7918CrossRef Broje V, Keller AA (2006) Improved mechanical oil spill recovery using an optimized geometry for the skimmer surface. Environ Sci Technol 40:7914–7918CrossRef
8.
Zurück zum Zitat Diya’uddeen BH, Daud WMAW, Aziz ARA (2011) Treatment technologies for petroleum refinery effluents: a review. Process Saf Environ 89:95–105CrossRef Diya’uddeen BH, Daud WMAW, Aziz ARA (2011) Treatment technologies for petroleum refinery effluents: a review. Process Saf Environ 89:95–105CrossRef
9.
Zurück zum Zitat Yao X, Song YL, Jiang L (2011) Applications of bio-inspired special wettable surfaces. Adv Mater 23:719–734CrossRef Yao X, Song YL, Jiang L (2011) Applications of bio-inspired special wettable surfaces. Adv Mater 23:719–734CrossRef
10.
Zurück zum Zitat Zeng X, Qian L, Yuan X et al (2017) Inspired by stenocara beetles: from water collection to high-efficiency water-in-oil emulsion separation. ACS Nano 11:760–769CrossRef Zeng X, Qian L, Yuan X et al (2017) Inspired by stenocara beetles: from water collection to high-efficiency water-in-oil emulsion separation. ACS Nano 11:760–769CrossRef
11.
Zurück zum Zitat Wang P, Zhao T, Bian R, Wang G, Liu H (2017) Robust superhydrophobic carbon nanotube film with lotus leaf mimetic multiscale hierarchical structures. ACS Nano 11:12385–12391CrossRef Wang P, Zhao T, Bian R, Wang G, Liu H (2017) Robust superhydrophobic carbon nanotube film with lotus leaf mimetic multiscale hierarchical structures. ACS Nano 11:12385–12391CrossRef
12.
Zurück zum Zitat Su B, Tian Y, Jiang L (2016) Bioinspired interfaces with superwettability: from materials to chemistry. J Am Chem Soc 138:1727–1748CrossRef Su B, Tian Y, Jiang L (2016) Bioinspired interfaces with superwettability: from materials to chemistry. J Am Chem Soc 138:1727–1748CrossRef
14.
Zurück zum Zitat Li J, Xu CC, Guo CQ, Tian HF, Zha F, Guo L (2018) Underoil superhydrophilic desert sand layer for efficient gravity-directed water-in-oil emulsions separation with high flux. J Mater Chem A 6:223–230CrossRef Li J, Xu CC, Guo CQ, Tian HF, Zha F, Guo L (2018) Underoil superhydrophilic desert sand layer for efficient gravity-directed water-in-oil emulsions separation with high flux. J Mater Chem A 6:223–230CrossRef
15.
Zurück zum Zitat Chu ZL, Feng YJ, Seeger S (2015) Oil/water separation with selective superantiwetting/superwetting surface materials. Angew Chem Int Edit 54:2328–2338CrossRef Chu ZL, Feng YJ, Seeger S (2015) Oil/water separation with selective superantiwetting/superwetting surface materials. Angew Chem Int Edit 54:2328–2338CrossRef
16.
Zurück zum Zitat Du R, Gao X, Feng QL et al (2016) Microscopic dimensions engineering: stepwise manipulation of the surface wettability on 3D substrates for oil/water separation. Adv Mater 28:936–942CrossRef Du R, Gao X, Feng QL et al (2016) Microscopic dimensions engineering: stepwise manipulation of the surface wettability on 3D substrates for oil/water separation. Adv Mater 28:936–942CrossRef
17.
Zurück zum Zitat Dai CA, Liu N, Cao YZ, Chen YN, Lu F, Feng L (2014) Fast formation of superhydrophobic octadecylphosphonic acid (ODPA) coating for self-cleaning and oil/water separation. Soft Matter 10:8116–8121CrossRef Dai CA, Liu N, Cao YZ, Chen YN, Lu F, Feng L (2014) Fast formation of superhydrophobic octadecylphosphonic acid (ODPA) coating for self-cleaning and oil/water separation. Soft Matter 10:8116–8121CrossRef
18.
Zurück zum Zitat Chen QY, de Leon A, Advincula RC (2015) Inorganic-organic thiol-ene coated mesh for oil/water separation. ACS Appl Mater Interfaces 7:18566–18573CrossRef Chen QY, de Leon A, Advincula RC (2015) Inorganic-organic thiol-ene coated mesh for oil/water separation. ACS Appl Mater Interfaces 7:18566–18573CrossRef
19.
Zurück zum Zitat Yang J, Tang YC, Xu JQ, Chen BB, Tang H, Li CS (2015) Durable superhydrophobic/superoleophilic epoxy/attapulgite nanocomposite coatings for oil/water separation. Surf Coat Tech 272:285–290CrossRef Yang J, Tang YC, Xu JQ, Chen BB, Tang H, Li CS (2015) Durable superhydrophobic/superoleophilic epoxy/attapulgite nanocomposite coatings for oil/water separation. Surf Coat Tech 272:285–290CrossRef
20.
Zurück zum Zitat Zhang W, Liu N, Cao Y et al (2015) A solvothermal route decorated on different substrates: controllable separation of an oil/water mixture to a stabilized nanoscale emulsion. Adv Mater 27:7349–7355CrossRef Zhang W, Liu N, Cao Y et al (2015) A solvothermal route decorated on different substrates: controllable separation of an oil/water mixture to a stabilized nanoscale emulsion. Adv Mater 27:7349–7355CrossRef
21.
Zurück zum Zitat Zhang M, Wang CY, Wang SL, Li J (2013) Fabrication of superhydrophobic cotton textiles for water-oil separation based on drop-coating route. Carbohydr Polym 97:59–64CrossRef Zhang M, Wang CY, Wang SL, Li J (2013) Fabrication of superhydrophobic cotton textiles for water-oil separation based on drop-coating route. Carbohydr Polym 97:59–64CrossRef
22.
Zurück zum Zitat Zhang JP, Seeger S (2011) Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv Funct Mater 21:4699–4704CrossRef Zhang JP, Seeger S (2011) Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv Funct Mater 21:4699–4704CrossRef
23.
Zurück zum Zitat Liu X, Ge L, Li W, Wang X, Li F (2015) Layered double hydroxide functionalized textile for effective oil/water separation and selective oil adsorption. ACS Appl Mater Interfaces 7:791–800CrossRef Liu X, Ge L, Li W, Wang X, Li F (2015) Layered double hydroxide functionalized textile for effective oil/water separation and selective oil adsorption. ACS Appl Mater Interfaces 7:791–800CrossRef
24.
Zurück zum Zitat An AK, Guo JX, Lee EJ et al (2017) PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation. J Membr Sci 525:57–67CrossRef An AK, Guo JX, Lee EJ et al (2017) PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation. J Membr Sci 525:57–67CrossRef
25.
Zurück zum Zitat Che HL, Huo M, Peng L et al (2015) CO2-responsive nanofibrous membranes with switchable oil/water wettability. Angew Chem Int Edit 54:8934–8938CrossRef Che HL, Huo M, Peng L et al (2015) CO2-responsive nanofibrous membranes with switchable oil/water wettability. Angew Chem Int Edit 54:8934–8938CrossRef
26.
Zurück zum Zitat Zhu YZ, Zhang F, Wang D, Pei XF, Zhang WB, Jin J (2013) A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency. J Mater Chem A 1:5758–5765CrossRef Zhu YZ, Zhang F, Wang D, Pei XF, Zhang WB, Jin J (2013) A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency. J Mater Chem A 1:5758–5765CrossRef
27.
Zurück zum Zitat Zhang XY, Li Z, Liu KS, Jiang L (2013) Bioinspired multifunctional foam with self-cleaning and oil/water separation. Adv Funct Mater 23:2881–2886CrossRef Zhang XY, Li Z, Liu KS, Jiang L (2013) Bioinspired multifunctional foam with self-cleaning and oil/water separation. Adv Funct Mater 23:2881–2886CrossRef
28.
Zurück zum Zitat Ruan CP, Ai KL, Li XB, Lu LH (2014) A superhydrophobic sponge with excellent absorbency and flame retardancy. Angew Chem Int Edit 53:5556–5560CrossRef Ruan CP, Ai KL, Li XB, Lu LH (2014) A superhydrophobic sponge with excellent absorbency and flame retardancy. Angew Chem Int Edit 53:5556–5560CrossRef
30.
Zurück zum Zitat Li J, Xu CC, Zhang Y, Wang RF, Zha F, She HD (2016) Robust superhydrophobic attapulgite coated polyurethane sponge for efficient immiscible oil/water mixture and emulsion separation. J Mater Chem A 4:15546–15553CrossRef Li J, Xu CC, Zhang Y, Wang RF, Zha F, She HD (2016) Robust superhydrophobic attapulgite coated polyurethane sponge for efficient immiscible oil/water mixture and emulsion separation. J Mater Chem A 4:15546–15553CrossRef
32.
Zurück zum Zitat Nguyen DD, Tai NH, Lee SB, Kuo WS (2012) Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy Environ Sci 5:7908–7912CrossRef Nguyen DD, Tai NH, Lee SB, Kuo WS (2012) Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy Environ Sci 5:7908–7912CrossRef
33.
Zurück zum Zitat Si Y, Fu QX, Wang XQ et al (2015) Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions. ACS Nano 9:3791–3799CrossRef Si Y, Fu QX, Wang XQ et al (2015) Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions. ACS Nano 9:3791–3799CrossRef
34.
Zurück zum Zitat Waite JH, Tanzer ML (1981) Polyphenolic substance of mytilus edulis: novel adhesive containing L-Dopa and Hydroxyproline. Science 212:1038–1040CrossRef Waite JH, Tanzer ML (1981) Polyphenolic substance of mytilus edulis: novel adhesive containing L-Dopa and Hydroxyproline. Science 212:1038–1040CrossRef
35.
Zurück zum Zitat Lee H, Scherer NF, Messersmith PB (2006) Single-molecule mechanics of mussel adhesion. P Natl Acad Sci USA 103:12999–13003CrossRef Lee H, Scherer NF, Messersmith PB (2006) Single-molecule mechanics of mussel adhesion. P Natl Acad Sci USA 103:12999–13003CrossRef
36.
Zurück zum Zitat Hong S, Na YS, Choi S, Song IT, Kim WY, Lee H (2012) Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv Funct Mater 22:4711–4717CrossRef Hong S, Na YS, Choi S, Song IT, Kim WY, Lee H (2012) Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv Funct Mater 22:4711–4717CrossRef
37.
Zurück zum Zitat Anderson TH, Yu J, Estrada A, Hammer MU, Waite JH, Israelachvili JN (2010) The contribution of DOPA to substrate-peptide adhesion and internal cohesion of mussel-inspired synthetic peptide films. Adv Funct Mater 20:4196–4205CrossRef Anderson TH, Yu J, Estrada A, Hammer MU, Waite JH, Israelachvili JN (2010) The contribution of DOPA to substrate-peptide adhesion and internal cohesion of mussel-inspired synthetic peptide films. Adv Funct Mater 20:4196–4205CrossRef
38.
Zurück zum Zitat Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430CrossRef Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430CrossRef
39.
40.
Zurück zum Zitat Zhu Q, Pan QM (2014) Mussel-inspired direct immobilization of nanoparticles and application for oil-water separation. ACS Nano 8:1402–1409CrossRef Zhu Q, Pan QM (2014) Mussel-inspired direct immobilization of nanoparticles and application for oil-water separation. ACS Nano 8:1402–1409CrossRef
41.
Zurück zum Zitat Cao YZ, Zhang XY, Tao L et al (2013) Mussel-inspired chemistry and michael addition reaction for efficient oil/water separation. ACS Appl Mater Interfaces 5:4438–4442CrossRef Cao YZ, Zhang XY, Tao L et al (2013) Mussel-inspired chemistry and michael addition reaction for efficient oil/water separation. ACS Appl Mater Interfaces 5:4438–4442CrossRef
42.
Zurück zum Zitat Li JH, Zhao SF, Zhang GP et al (2015) A facile method to prepare highly compressible three-dimensional graphene-only sponge. J Mater Chem A 3:15482–15488CrossRef Li JH, Zhao SF, Zhang GP et al (2015) A facile method to prepare highly compressible three-dimensional graphene-only sponge. J Mater Chem A 3:15482–15488CrossRef
43.
Zurück zum Zitat Tian Y, Su B, Jiang L (2014) Interfacial material system exhibiting superwettability. Adv Mater 26:6872–6897CrossRef Tian Y, Su B, Jiang L (2014) Interfacial material system exhibiting superwettability. Adv Mater 26:6872–6897CrossRef
44.
Zurück zum Zitat Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551CrossRef Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551CrossRef
46.
Zurück zum Zitat Ch M, Mj P (1993) Oil sorption behavior of various sorbents studied by sorption capacity measurement and environmental scanning electron microscopy. Microsc Res Tech 25:447CrossRef Ch M, Mj P (1993) Oil sorption behavior of various sorbents studied by sorption capacity measurement and environmental scanning electron microscopy. Microsc Res Tech 25:447CrossRef
47.
Zurück zum Zitat Lee C, Baik S (2010) Vertically-aligned carbon nano-tube membrane filters with superhydrophobicity and superoleophilicity. Carbon 48:2192–2197CrossRef Lee C, Baik S (2010) Vertically-aligned carbon nano-tube membrane filters with superhydrophobicity and superoleophilicity. Carbon 48:2192–2197CrossRef
48.
Zurück zum Zitat Yuan JK, Liu XG, Akbulut O et al (2008) Superwetting nanowire membranes for selective absorption. Nat Nanotechnol 3:332–336CrossRef Yuan JK, Liu XG, Akbulut O et al (2008) Superwetting nanowire membranes for selective absorption. Nat Nanotechnol 3:332–336CrossRef
49.
Zurück zum Zitat Ren RP, Li W, Lv YK (2017) A robust, superhydrophobic graphene aerogel as a recyclable sorbent for oils and organic solvents at various temperatures. J Colloid Interfaces Sci 500:63–68CrossRef Ren RP, Li W, Lv YK (2017) A robust, superhydrophobic graphene aerogel as a recyclable sorbent for oils and organic solvents at various temperatures. J Colloid Interfaces Sci 500:63–68CrossRef
50.
Zurück zum Zitat Calcagnile P, Caputo I, Cannoletta D, Bettini S, Valli L, Demitri C (2017) A bio-based composite material for water remediation from oily contaminants. Mater Des 134:374–382CrossRef Calcagnile P, Caputo I, Cannoletta D, Bettini S, Valli L, Demitri C (2017) A bio-based composite material for water remediation from oily contaminants. Mater Des 134:374–382CrossRef
51.
Zurück zum Zitat Zhang L, Li HQ, Lai XJ, Su XJ, Liang T, Zeng XR (2017) Thiolated graphene-based superhydrophobic sponges for oil-water separation. Chem Eng J 316:736–743CrossRef Zhang L, Li HQ, Lai XJ, Su XJ, Liang T, Zeng XR (2017) Thiolated graphene-based superhydrophobic sponges for oil-water separation. Chem Eng J 316:736–743CrossRef
52.
Zurück zum Zitat Su CP, Yang H, Zhao HP, Liu YL, Chen R (2017) Recyclable and biodegradable superhydrophobic and superoleophilic chitosan sponge for the effective removal of oily pollutants from water. Chem Eng J 330:423–432CrossRef Su CP, Yang H, Zhao HP, Liu YL, Chen R (2017) Recyclable and biodegradable superhydrophobic and superoleophilic chitosan sponge for the effective removal of oily pollutants from water. Chem Eng J 330:423–432CrossRef
53.
Zurück zum Zitat Xu LM, Xiao GY, Chen CB et al (2015) Superhydrophobic and superoleophilic graphene aerogel prepared by facile chemical reduction. J Mater Chem A 3:7498–7504CrossRef Xu LM, Xiao GY, Chen CB et al (2015) Superhydrophobic and superoleophilic graphene aerogel prepared by facile chemical reduction. J Mater Chem A 3:7498–7504CrossRef
54.
Zurück zum Zitat Li Y, Zhang ZZ, Wang MK, Men XH, Xue QJ (2017) One-pot fabrication of nanoporous polymer decorated materials: from oil-collecting devices to high-efficiency emulsion separation. J Mater Chem A 5:5077–5087CrossRef Li Y, Zhang ZZ, Wang MK, Men XH, Xue QJ (2017) One-pot fabrication of nanoporous polymer decorated materials: from oil-collecting devices to high-efficiency emulsion separation. J Mater Chem A 5:5077–5087CrossRef
Metadaten
Titel
A robust 3D superhydrophobic sponge for in situ continuous oil removing
verfasst von
Huicai Wang
Jibin Yang
Xiaping Liu
Zhongan Tao
Zhenwen Wang
Ruirui Yue
Publikationsdatum
26.09.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 2/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2938-4

Weitere Artikel der Ausgabe 2/2019

Journal of Materials Science 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.