Skip to main content
Erschienen in: Engineering with Computers 2/2012

01.04.2012 | Original Article

A robust solution procedure for hyperelastic solids with large boundary deformation

verfasst von: Suzanne M. Shontz, Stephen A. Vavasis

Erschienen in: Engineering with Computers | Ausgabe 2/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Compressible Mooney–Rivlin theory has been used to model hyperelastic solids, such as rubber and porous polymers, and more recently for the modeling of soft tissues for biomedical tissues, undergoing large elastic deformations. We propose a solution procedure for Lagrangian finite element discretization of a static nonlinear compressible Mooney–Rivlin hyperelastic solid. We consider the case in which the boundary condition is a large prescribed deformation, so that mesh tangling becomes an obstacle for straightforward algorithms. Our solution procedure involves a largely geometric procedure to untangle the mesh: solution of a sequence of linear systems to obtain initial guesses for interior nodal positions for which no element is inverted. After the mesh is untangled, we take Newton iterations to converge to a mechanical equilibrium. The Newton iterations are safeguarded by a line search similar to one used in optimization. Our computational results indicate that the algorithm is up to 70 times faster than a straightforward Newton continuation procedure and is also more robust (i.e., able to tolerate much larger deformations). For a few extremely large deformations, the deformed mesh could only be computed through the use of an expensive Newton continuation method while using a tight convergence tolerance and taking very small steps.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Holzapfel G (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, LondonMATH Holzapfel G (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, LondonMATH
2.
Zurück zum Zitat Ciarlet P, Geymonat G (1982) Sur les lois de comportement en élasticité non-linéaire compressible. C R Acad Sci Paris Sér II 295:423–426MathSciNetMATH Ciarlet P, Geymonat G (1982) Sur les lois de comportement en élasticité non-linéaire compressible. C R Acad Sci Paris Sér II 295:423–426MathSciNetMATH
3.
4.
Zurück zum Zitat Gibson L, Ashby M (1997) Cellular solids. Structure and properties, 2nd edn. Cambridge University Press, Cambridge Gibson L, Ashby M (1997) Cellular solids. Structure and properties, 2nd edn. Cambridge University Press, Cambridge
5.
Zurück zum Zitat Weichert F, Schröder A, Landes C, Shamaa A, Awad SK, Walczak L, Müller H, Wagner M (2010) Computation of a finite element-conformal tetrahedral mesh approximation for simulated soft tissue deformation using a deformable surface model. Med Biol Eng Comput 48:597–610CrossRef Weichert F, Schröder A, Landes C, Shamaa A, Awad SK, Walczak L, Müller H, Wagner M (2010) Computation of a finite element-conformal tetrahedral mesh approximation for simulated soft tissue deformation using a deformable surface model. Med Biol Eng Comput 48:597–610CrossRef
6.
Zurück zum Zitat Belytschko T, Liu W, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New YorkMATH Belytschko T, Liu W, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New YorkMATH
7.
Zurück zum Zitat Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publishers, New YorkMATH Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publishers, New YorkMATH
9.
Zurück zum Zitat Shontz S, Vavasis S (2010) Analysis of and workarounds for element reversal for a finite element-based algorithm for warping triangular and tetrahedral meshes. BIT Numer Math 50(4):863–884MathSciNetMATHCrossRef Shontz S, Vavasis S (2010) Analysis of and workarounds for element reversal for a finite element-based algorithm for warping triangular and tetrahedral meshes. BIT Numer Math 50(4):863–884MathSciNetMATHCrossRef
10.
Zurück zum Zitat Wright S (1997) Primal-dual interior-point methods. Society for Industrial and Applied Mathematics, PhiladelphiaMATHCrossRef Wright S (1997) Primal-dual interior-point methods. Society for Industrial and Applied Mathematics, PhiladelphiaMATHCrossRef
11.
Zurück zum Zitat Stein K, Tezduyar T, Benney R (2003) Moving mesh techniques for fluid–structure interactions with large displacements. J Appl Mech (ASME) 70:58–63MATHCrossRef Stein K, Tezduyar T, Benney R (2003) Moving mesh techniques for fluid–structure interactions with large displacements. J Appl Mech (ASME) 70:58–63MATHCrossRef
12.
Zurück zum Zitat Shontz SM (2005) Numerical methods for problems with moving meshes. Ph.D. Thesis. Cornell University Shontz SM (2005) Numerical methods for problems with moving meshes. Ph.D. Thesis. Cornell University
13.
Zurück zum Zitat Freitag L, Plassmann P (2000) Local optimization-based simplicial mesh untangling and improvement. Int J Numer Methods Eng 49:109–125MATHCrossRef Freitag L, Plassmann P (2000) Local optimization-based simplicial mesh untangling and improvement. Int J Numer Methods Eng 49:109–125MATHCrossRef
14.
Zurück zum Zitat Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, BaltimoreMATH Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, BaltimoreMATH
15.
Zurück zum Zitat Dennis JE Jr, Schnabel RB (1996) Numerical methods for unconstrained optimization and nonlinear equations. Society for Industrial and Applied Mathematics, Philadelphia Dennis JE Jr, Schnabel RB (1996) Numerical methods for unconstrained optimization and nonlinear equations. Society for Industrial and Applied Mathematics, Philadelphia
16.
Zurück zum Zitat Shewchuk J (1996) Triangle: engineering a 2D quality mesh generator and Delaunay triangulator. In: Proceedings of the first workshop on applied computational geometry. Association for Computing Machinery, pp 124–133 Shewchuk J (1996) Triangle: engineering a 2D quality mesh generator and Delaunay triangulator. In: Proceedings of the first workshop on applied computational geometry. Association for Computing Machinery, pp 124–133
17.
Zurück zum Zitat Knupp P (2003) Sandia National Laboratories, personal communication Knupp P (2003) Sandia National Laboratories, personal communication
18.
Zurück zum Zitat Shephard M, Dey S, Georges M (1995) Automatic meshing of curved three-dimensional domains: curving finite elements and curvature-based mesh control. In: Babuska I, Flaherty J, Hopcroft J, Henshaw W, Oliger J, Tezduyar T (eds) Modeling, mesh generation, and adaptive numerical methods for partial differential equations. Springer, New York Shephard M, Dey S, Georges M (1995) Automatic meshing of curved three-dimensional domains: curving finite elements and curvature-based mesh control. In: Babuska I, Flaherty J, Hopcroft J, Henshaw W, Oliger J, Tezduyar T (eds) Modeling, mesh generation, and adaptive numerical methods for partial differential equations. Springer, New York
19.
Zurück zum Zitat Vavasis S (2003) A Bernstein-Bézier sufficient condition for invertibility of polynomial mappings. Archived by arxiv.org, cs.NA/0308021 Vavasis S (2003) A Bernstein-Bézier sufficient condition for invertibility of polynomial mappings. Archived by arxiv.org, cs.NA/0308021
20.
Zurück zum Zitat Salem A, Canann S, Saigal S (1997) Robust quality metric for quadratic triangular 2D finite elements. Trends Unstruct Mesh Gener 220:73–80 Salem A, Canann S, Saigal S (1997) Robust quality metric for quadratic triangular 2D finite elements. Trends Unstruct Mesh Gener 220:73–80
21.
Zurück zum Zitat Salem A, Canann S, Saigal S (2001) Mid-node admissible spaces for quadratic triangular 2D arbitrarily curved finite elements. Int J Numer Methods Eng 50:253–272MathSciNetMATHCrossRef Salem A, Canann S, Saigal S (2001) Mid-node admissible spaces for quadratic triangular 2D arbitrarily curved finite elements. Int J Numer Methods Eng 50:253–272MathSciNetMATHCrossRef
22.
Zurück zum Zitat Salem A, Canann S, Saigal S (2001) Mid-node admissible spaces for quadratic triangular 2D finite elements with one edge curved. Int J Numer Methods Eng 50:181–197MathSciNetMATHCrossRef Salem A, Canann S, Saigal S (2001) Mid-node admissible spaces for quadratic triangular 2D finite elements with one edge curved. Int J Numer Methods Eng 50:181–197MathSciNetMATHCrossRef
23.
Zurück zum Zitat Salem A, Saigal S, Canann S (2001) Mid-node admissible space for 3D quadratic tetrahedral finite elements. Eng Comput 17:39–54MATHCrossRef Salem A, Saigal S, Canann S (2001) Mid-node admissible space for 3D quadratic tetrahedral finite elements. Eng Comput 17:39–54MATHCrossRef
24.
Zurück zum Zitat Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, BerlinMATH Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, BerlinMATH
Metadaten
Titel
A robust solution procedure for hyperelastic solids with large boundary deformation
verfasst von
Suzanne M. Shontz
Stephen A. Vavasis
Publikationsdatum
01.04.2012
Verlag
Springer-Verlag
Erschienen in
Engineering with Computers / Ausgabe 2/2012
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-011-0225-y

Weitere Artikel der Ausgabe 2/2012

Engineering with Computers 2/2012 Zur Ausgabe

Neuer Inhalt