Skip to main content

11.08.2022

A self-adaptive evolutionary algorithm using Monte Carlo Fragment insertion and conformation clustering for the protein structure prediction problem

verfasst von: Rafael Stubs Parpinelli, Nilcimar Neitzel Will, Renan Samuel da Silva

Erschienen in: Natural Computing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Protein Structure Prediction Problem is one of the most important and challenging open problems in Computer Science and Structural Bioinformatics. Accurately predicting protein conformations would significantly impact several fields, such as understanding proteinopathies and developing smart protein-based drugs. As such, this work has as its primary goal to improve the prediction power of ab initio methods by utilizing a self-adaptive evolutionary algorithm using Monte Carlo based fragment insertion and conformational clustering. A meta-heuristic is used as the core of the conformation sampling process with fragment insertion, feeding domain-specific information into the process. The online parameter control routines allow the method to adapt to a protein’s structure specificity and behave dynamically in different stages of the optimization process. The results obtained by the proposed method were compared to results obtained from several other algorithms found in the literature. It is possible to conclude that the proposed method is highly competitive in terms of free-energy and RMSD for the protein set used in the experiments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
 
3
Only physical cores were considered. No virtual (Hyper-threading) core was involved in the computations.
 
6
For the readers with a black and white copy, the predicted conformation is in a light shade of grey, while the native conformation is in dark grey.
 
Literatur
Zurück zum Zitat Alford RF, Leaver-Fay A, Jeliazkov JR, O’Meara MJ, DiMaio FP, Park H, Shapovalov MV, Renfrew PD, Mulligan VK, Kappel K et al (2017) The Rosetta all-atom energy function for macromolecular modeling and design. J Chem Theory Comput 13(6):3031–3048CrossRef Alford RF, Leaver-Fay A, Jeliazkov JR, O’Meara MJ, DiMaio FP, Park H, Shapovalov MV, Renfrew PD, Mulligan VK, Kappel K et al (2017) The Rosetta all-atom energy function for macromolecular modeling and design. J Chem Theory Comput 13(6):3031–3048CrossRef
Zurück zum Zitat Álvarez Ó, Fernández-Martínez JL, Cernea A, Fernández-Muñiz Z, Kloczkowski A (2018) Protein tertiary structure prediction via svd and pso sampling. In: International conference on bioinformatics and biomedical engineering. Springer, pp 211–220 Álvarez Ó, Fernández-Martínez JL, Cernea A, Fernández-Muñiz Z, Kloczkowski A (2018) Protein tertiary structure prediction via svd and pso sampling. In: International conference on bioinformatics and biomedical engineering. Springer, pp 211–220
Zurück zum Zitat Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181(4096):223–230CrossRef Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181(4096):223–230CrossRef
Zurück zum Zitat Berger B, Leighton T (1998) Protein folding in the hydrophobic-hydrophilic (hp) model is np-complete. J Comput Biol 5(1):27–40CrossRef Berger B, Leighton T (1998) Protein folding in the hydrophobic-hydrophilic (hp) model is np-complete. J Comput Biol 5(1):27–40CrossRef
Zurück zum Zitat Blum C, Puchinger J, Raidl GR, Roli A (2011) Hybrid metaheuristics in combinatorial optimization: a survey. Appl Soft Comput 11(6):4135–4151MATHCrossRef Blum C, Puchinger J, Raidl GR, Roli A (2011) Hybrid metaheuristics in combinatorial optimization: a survey. Appl Soft Comput 11(6):4135–4151MATHCrossRef
Zurück zum Zitat Boiani M, Parpinelli RS (2020) A GPU-based hybrid jDE algorithm applied to the 3D-AB protein structure prediction. Swarm Evol Comput 58:100711CrossRef Boiani M, Parpinelli RS (2020) A GPU-based hybrid jDE algorithm applied to the 3D-AB protein structure prediction. Swarm Evol Comput 58:100711CrossRef
Zurück zum Zitat Borguesan B, e Silva MB, Grisci B, Inostroza-Ponta M, Dorn M (2015) Apl: an angle probability list to improve knowledge-based metaheuristics for the three-dimensional protein structure prediction. Comput Biol Chem 59:142–157CrossRef Borguesan B, e Silva MB, Grisci B, Inostroza-Ponta M, Dorn M (2015) Apl: an angle probability list to improve knowledge-based metaheuristics for the three-dimensional protein structure prediction. Comput Biol Chem 59:142–157CrossRef
Zurück zum Zitat Borguesan B, Narloch PH, Inostroza-Ponta M, Dorn M (2018) A genetic algorithm based on restricted tournament selection for the 3d-psp problem. In: 2018 IEEE congress on evolutionary computation (CEC). IEEE, IEEE, Rio de Janeiro, Brazil, pp 1–8. https://doi.org/10.1109/CEC.2018.8477721 Borguesan B, Narloch PH, Inostroza-Ponta M, Dorn M (2018) A genetic algorithm based on restricted tournament selection for the 3d-psp problem. In: 2018 IEEE congress on evolutionary computation (CEC). IEEE, IEEE, Rio de Janeiro, Brazil, pp 1–8. https://​doi.​org/​10.​1109/​CEC.​2018.​8477721
Zurück zum Zitat Brooks BR, Brooks CL III, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S et al (2009) Charmm: the biomolecular simulation program. J Comput Chem 30(10):1545–1614CrossRef Brooks BR, Brooks CL III, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S et al (2009) Charmm: the biomolecular simulation program. J Comput Chem 30(10):1545–1614CrossRef
Zurück zum Zitat Correa L, Borguesan B, Farfan C, Inostroza-Ponta M, Dorn M (2016) A memetic algorithm for 3-D protein structure prediction problem. IEEE/ACM Trans Comput Biol Bioinf 15:690CrossRef Correa L, Borguesan B, Farfan C, Inostroza-Ponta M, Dorn M (2016) A memetic algorithm for 3-D protein structure prediction problem. IEEE/ACM Trans Comput Biol Bioinf 15:690CrossRef
Zurück zum Zitat Correa LDL, Dorn M (2018) A knowledge-based artificial bee colony algorithm for the 3-d protein structure prediction problem. In: 2018 IEEE congress on evolutionary computation (CEC). IEEE, Rio de Janeiro, Brazil, pp 1–8 Correa LDL, Dorn M (2018) A knowledge-based artificial bee colony algorithm for the 3-d protein structure prediction problem. In: 2018 IEEE congress on evolutionary computation (CEC). IEEE, Rio de Janeiro, Brazil, pp 1–8
Zurück zum Zitat David A, Islam S, Tankhilevich E, Sternberg MJ (2022) The AlphaFold database of protein structures: a biologist’s guide. J Mol Biol 434(2):167336CrossRef David A, Islam S, Tankhilevich E, Sternberg MJ (2022) The AlphaFold database of protein structures: a biologist’s guide. J Mol Biol 434(2):167336CrossRef
Zurück zum Zitat de Oliveira SH, Law EC, Shi J, Deane CM (2017) Sequential search leads to faster, more efficient fragment-based de novo protein structure prediction. Bioinformatics 34(7):1132–1140CrossRef de Oliveira SH, Law EC, Shi J, Deane CM (2017) Sequential search leads to faster, more efficient fragment-based de novo protein structure prediction. Bioinformatics 34(7):1132–1140CrossRef
Zurück zum Zitat Dorn M, e Silva MB, Buriol LS, Lamb LC (2014) Three-dimensional protein structure prediction: methods and computational strategies. Comput Biol Chem 53:251–276CrossRef Dorn M, e Silva MB, Buriol LS, Lamb LC (2014) Three-dimensional protein structure prediction: methods and computational strategies. Comput Biol Chem 53:251–276CrossRef
Zurück zum Zitat Eichenberger AP, Allison JR, Dolenc J, Geerke DP, Horta BA, Meier K, Oostenbrink C, Schmid N, Steiner D, Wang D et al (2011) Gromos++ software for the analysis of biomolecular simulation trajectories. J Chem Theory Comput 7(10):3379–3390CrossRef Eichenberger AP, Allison JR, Dolenc J, Geerke DP, Horta BA, Meier K, Oostenbrink C, Schmid N, Steiner D, Wang D et al (2011) Gromos++ software for the analysis of biomolecular simulation trajectories. J Chem Theory Comput 7(10):3379–3390CrossRef
Zurück zum Zitat Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins Struct Funct Bioinf 23(4):566–579CrossRef Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins Struct Funct Bioinf 23(4):566–579CrossRef
Zurück zum Zitat Gao S, Song S, Cheng J, Todo Y, Zhou M (2018) Incorporation of solvent effect into multi-objective evolutionary algorithm for improved protein structure prediction. IEEE/ACM Trans Comput Biol Bioinf 15(4):1365–1378CrossRef Gao S, Song S, Cheng J, Todo Y, Zhou M (2018) Incorporation of solvent effect into multi-objective evolutionary algorithm for improved protein structure prediction. IEEE/ACM Trans Comput Biol Bioinf 15(4):1365–1378CrossRef
Zurück zum Zitat Garza-Fabre M, Kandathil SM, Handl J, Knowles J, Lovell SC (2016) Generating, maintaining, and exploiting diversity in a memetic algorithm for protein structure prediction. Evol Comput 24(4):577–607CrossRef Garza-Fabre M, Kandathil SM, Handl J, Knowles J, Lovell SC (2016) Generating, maintaining, and exploiting diversity in a memetic algorithm for protein structure prediction. Evol Comput 24(4):577–607CrossRef
Zurück zum Zitat Geng L, Shen H (2017) A protein structure refinement method using bi-objective particle swarm optimization algorithm. Image and Signal Processing. In: BioMedical Engineering and Informatics (CISP-BMEI), 2017 10th international congress on. IEEE, Shanghai, China, pp 1–5 Geng L, Shen H (2017) A protein structure refinement method using bi-objective particle swarm optimization algorithm. Image and Signal Processing. In: BioMedical Engineering and Informatics (CISP-BMEI), 2017 10th international congress on. IEEE, Shanghai, China, pp 1–5
Zurück zum Zitat Gront D, Kulp DW, Vernon RM, Strauss CE, Baker D (2011) Generalized fragment picking in Rosetta: design, protocols and applications. PloS One 6(8):e23294CrossRef Gront D, Kulp DW, Vernon RM, Strauss CE, Baker D (2011) Generalized fragment picking in Rosetta: design, protocols and applications. PloS One 6(8):e23294CrossRef
Zurück zum Zitat Gunn JR (1997) Sampling protein conformations using segment libraries and a genetic algorithm. J Chem Phys 106(10):4270–4281CrossRef Gunn JR (1997) Sampling protein conformations using segment libraries and a genetic algorithm. J Chem Phys 106(10):4270–4281CrossRef
Zurück zum Zitat Hao X, Zhang G (2017) Double estimation of distribution guided sampling algorithm for de-novo protein structure prediction. In: Control Conference (CCC). 2017 36th Chinese. IEEE, Dalian, China, pp 9853–9858 Hao X, Zhang G (2017) Double estimation of distribution guided sampling algorithm for de-novo protein structure prediction. In: Control Conference (CCC). 2017 36th Chinese. IEEE, Dalian, China, pp 9853–9858
Zurück zum Zitat Hao XH, Zhang GJ, Zhou XG (2017) Conformational space sampling method using multi-subpopulation differential evolution for de novo protein structure prediction. IEEE Trans Nanobiosci 16(7):618–633CrossRef Hao XH, Zhang GJ, Zhou XG (2017) Conformational space sampling method using multi-subpopulation differential evolution for de novo protein structure prediction. IEEE Trans Nanobiosci 16(7):618–633CrossRef
Zurück zum Zitat Hart WE, Istrail S (1997) Robust proofs of np-hardness for protein folding: general lattices and energy potentials. J Comput Biol 4(1):1–22CrossRef Hart WE, Istrail S (1997) Robust proofs of np-hardness for protein folding: general lattices and energy potentials. J Comput Biol 4(1):1–22CrossRef
Zurück zum Zitat Higgs T, Stantic B, Hoque MT, Sattar A (2010) Genetic algorithm feature-based resampling for protein structure prediction. In: Evolutionary computation (CEC). 2010 IEEE congress on. IEEE, Barcelona, Spain, pp 1–8 Higgs T, Stantic B, Hoque MT, Sattar A (2010) Genetic algorithm feature-based resampling for protein structure prediction. In: Evolutionary computation (CEC). 2010 IEEE congress on. IEEE, Barcelona, Spain, pp 1–8
Zurück zum Zitat Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589CrossRef Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589CrossRef
Zurück zum Zitat Kandathil SM, Garza-Fabre M, Handl J, Lovell SC (2018) Improved fragment-based protein structure prediction by redesign of search heuristics. Sci Rep 8(1):13694CrossRef Kandathil SM, Garza-Fabre M, Handl J, Lovell SC (2018) Improved fragment-based protein structure prediction by redesign of search heuristics. Sci Rep 8(1):13694CrossRef
Zurück zum Zitat Karafotias G, Hoogendoorn M, Eiben ÁE (2015) Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans Evol Comput 19(2):167–187CrossRef Karafotias G, Hoogendoorn M, Eiben ÁE (2015) Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans Evol Comput 19(2):167–187CrossRef
Zurück zum Zitat Kaufmann KW, Lemmon GH, DeLuca SL, Sheehan JH, Meiler J (2010) Practically useful: what the Rosetta protein modeling suite can do for you. Biochemistry 49(14):2987–2998CrossRef Kaufmann KW, Lemmon GH, DeLuca SL, Sheehan JH, Meiler J (2010) Practically useful: what the Rosetta protein modeling suite can do for you. Biochemistry 49(14):2987–2998CrossRef
Zurück zum Zitat Kim DE, Blum B, Bradley P, Baker D (2009) Sampling bottlenecks in de novo protein structure prediction. J Mol Biol 393(1):249–260CrossRef Kim DE, Blum B, Bradley P, Baker D (2009) Sampling bottlenecks in de novo protein structure prediction. J Mol Biol 393(1):249–260CrossRef
Zurück zum Zitat Lee J, Freddolino PL, Zhang Y (2017) Ab initio protein structure prediction. In: From protein structure to function with bioinformatics. Springer, Berlin, Germany, pp 3–35 Lee J, Freddolino PL, Zhang Y (2017) Ab initio protein structure prediction. In: From protein structure to function with bioinformatics. Springer, Berlin, Germany, pp 3–35
Zurück zum Zitat Li B, Chiong R, Lin M (2015) A balance-evolution artificial bee colony algorithm for protein structure optimization based on a three-dimensional AB off-lattice model. Comput Biol Chem 54:1–12MathSciNetCrossRef Li B, Chiong R, Lin M (2015) A balance-evolution artificial bee colony algorithm for protein structure optimization based on a three-dimensional AB off-lattice model. Comput Biol Chem 54:1–12MathSciNetCrossRef
Zurück zum Zitat Li Z, Scheraga HA (1987) Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc Natl Acad Sci 84(19):6611–6615MathSciNetCrossRef Li Z, Scheraga HA (1987) Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc Natl Acad Sci 84(19):6611–6615MathSciNetCrossRef
Zurück zum Zitat Lopes HS (2008) Evolutionary algorithms for the protein folding problem: a review and current trends. In: Computational intelligence in biomedicine and bioinformatics. Springer, pp 297–315 Lopes HS (2008) Evolutionary algorithms for the protein folding problem: a review and current trends. In: Computational intelligence in biomedicine and bioinformatics. Springer, pp 297–315
Zurück zum Zitat McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16(4):404–405CrossRef McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16(4):404–405CrossRef
Zurück zum Zitat Narloch PH, Dorn M (2019) A knowledge based self-adaptive differential evolution algorithm for protein structure prediction. In: International conference on computational science. Springer, pp 87–100 Narloch PH, Dorn M (2019) A knowledge based self-adaptive differential evolution algorithm for protein structure prediction. In: International conference on computational science. Springer, pp 87–100
Zurück zum Zitat Narloch PH, Parpinelli RS (2016) Diversification strategies in differential evolution algorithm to solve the protein structure prediction problem. In: International conference on intelligent systems design and applications. Springer, Porto, Portugal, pp 125–134 Narloch PH, Parpinelli RS (2016) Diversification strategies in differential evolution algorithm to solve the protein structure prediction problem. In: International conference on intelligent systems design and applications. Springer, Porto, Portugal, pp 125–134
Zurück zum Zitat Narloch PH, Parpinelli RS (2017) The protein structure prediction problem approached by a cascade differential evolution algorithm using rosetta. In: 2017 Brazilian conference on intelligent systems (BRACIS). IEEE, Uberlandia, Brazil, pp 294–299 Narloch PH, Parpinelli RS (2017) The protein structure prediction problem approached by a cascade differential evolution algorithm using rosetta. In: 2017 Brazilian conference on intelligent systems (BRACIS). IEEE, Uberlandia, Brazil, pp 294–299
Zurück zum Zitat Nunes LF, Galvão LC, Lopes HS, Moscato P, Berretta R (2016) An integer programming model for protein structure prediction using the 3D-HP side chain model. Discret Appl Math 198:206–214MathSciNetMATHCrossRef Nunes LF, Galvão LC, Lopes HS, Moscato P, Berretta R (2016) An integer programming model for protein structure prediction using the 3D-HP side chain model. Discret Appl Math 198:206–214MathSciNetMATHCrossRef
Zurück zum Zitat Oliveira M, Borguesan B, Dorn M (2017) Sade-spl: a self-adapting differential evolution algorithm with a loop structure pattern library for the psp problem. In: Evolutionary computation (CEC). 2017 IEEE Congress on. IEEE, Donostia - San Sebastián, Spain, pp 1095–1102 Oliveira M, Borguesan B, Dorn M (2017) Sade-spl: a self-adapting differential evolution algorithm with a loop structure pattern library for the psp problem. In: Evolutionary computation (CEC). 2017 IEEE Congress on. IEEE, Donostia - San Sebastián, Spain, pp 1095–1102
Zurück zum Zitat Olson B, Shehu A (2012) Efficient basin hopping in the protein energy surface. Bioinformatics and Biomedicine (BIBM). In: 2012 IEEE International conference on. IEEE, USA, pp 1–6 Olson B, Shehu A (2012) Efficient basin hopping in the protein energy surface. Bioinformatics and Biomedicine (BIBM). In: 2012 IEEE International conference on. IEEE, USA, pp 1–6
Zurück zum Zitat Parpinelli RS, Plichoski GF, Da Silva RS, Narloch PH (2019) A review of technique for on-line control of parameters in swarm intelligence and evolutionary computation algorithms. Int J Bio-Inspir Comput 13:1–20CrossRef Parpinelli RS, Plichoski GF, Da Silva RS, Narloch PH (2019) A review of technique for on-line control of parameters in swarm intelligence and evolutionary computation algorithms. Int J Bio-Inspir Comput 13:1–20CrossRef
Zurück zum Zitat Prentiss MC, Wales DJ, Wolynes PG (2008) Protein structure prediction using basin-hopping. J Chem Phys 128(22):06B608CrossRef Prentiss MC, Wales DJ, Wolynes PG (2008) Protein structure prediction using basin-hopping. J Chem Phys 128(22):06B608CrossRef
Zurück zum Zitat Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417CrossRef Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417CrossRef
Zurück zum Zitat Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimization. In: Evolutionary Computation, 2005, vol 2. The 2005 IEEE Congress on. IEEE, Edinburgh, Scotland, pp 1785–1791 Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimization. In: Evolutionary Computation, 2005, vol 2. The 2005 IEEE Congress on. IEEE, Edinburgh, Scotland, pp 1785–1791
Zurück zum Zitat Ramyachitra D, Ajeeth A (2017) Modcsa-ca: a multi objective diversity controlled self adaptive cuckoo algorithm for protein structure prediction. Gene Rep 8:100–106CrossRef Ramyachitra D, Ajeeth A (2017) Modcsa-ca: a multi objective diversity controlled self adaptive cuckoo algorithm for protein structure prediction. Gene Rep 8:100–106CrossRef
Zurück zum Zitat Rohl CA, Strauss CE, Misura KM, Baker D (2004) Protein structure prediction using rosetta. In: Methods in enzymology, vol. 383. Elsevier, New York, USA, pp 66–93 Rohl CA, Strauss CE, Misura KM, Baker D (2004) Protein structure prediction using rosetta. In: Methods in enzymology, vol. 383. Elsevier, New York, USA, pp 66–93
Zurück zum Zitat Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the amber biomolecular simulation package. Wiley Interdiscip Rev Comput Mol Sci 3(2):198–210CrossRef Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the amber biomolecular simulation package. Wiley Interdiscip Rev Comput Mol Sci 3(2):198–210CrossRef
Zurück zum Zitat Silva RS, Parpinelli RS (2018) A multistage simulated annealing for protein structure prediction using Rosetta. Anais do Computer on the Beach pp 850–859 Silva RS, Parpinelli RS (2018) A multistage simulated annealing for protein structure prediction using Rosetta. Anais do Computer on the Beach pp 850–859
Zurück zum Zitat Silva RS, Parpinelli RS (2019) A self-adaptive differential evolution with fragment insertion for the protein structure prediction problem. In: International workshop on hybrid metaheuristics. Springer, pp 136–149 Silva RS, Parpinelli RS (2019) A self-adaptive differential evolution with fragment insertion for the protein structure prediction problem. In: International workshop on hybrid metaheuristics. Springer, pp 136–149
Zurück zum Zitat Simoncini D, Schiex T, Zhang KY (2017) Balancing exploration and exploitation in population-based sampling improves fragment-based de novo protein structure prediction. Proteins Struct Funct Bioinf 85(5):852–858CrossRef Simoncini D, Schiex T, Zhang KY (2017) Balancing exploration and exploitation in population-based sampling improves fragment-based de novo protein structure prediction. Proteins Struct Funct Bioinf 85(5):852–858CrossRef
Zurück zum Zitat Sinha A, Malo P, Deb K (2018) A review on bilevel optimization: from classical to evolutionary approaches and applications. IEEE Trans Evol Comput 22(2):276–295CrossRef Sinha A, Malo P, Deb K (2018) A review on bilevel optimization: from classical to evolutionary approaches and applications. IEEE Trans Evol Comput 22(2):276–295CrossRef
Zurück zum Zitat Song S, Ji J, Chen X, Gao S, Tang Z, Todo Y (2018) Adoption of an improved PSO to explore a compound multi-objective energy function in protein structure prediction. Appl Soft Comput 72:539–551CrossRef Song S, Ji J, Chen X, Gao S, Tang Z, Todo Y (2018) Adoption of an improved PSO to explore a compound multi-objective energy function in protein structure prediction. Appl Soft Comput 72:539–551CrossRef
Zurück zum Zitat Sudha S, Baskar S, Amali SMJ, Krishnaswamy S (2015) Protein structure prediction using diversity controlled self-adaptive differential evolution with local search. Soft Comput 19(6):1635–1646CrossRef Sudha S, Baskar S, Amali SMJ, Krishnaswamy S (2015) Protein structure prediction using diversity controlled self-adaptive differential evolution with local search. Soft Comput 19(6):1635–1646CrossRef
Zurück zum Zitat Varela D, Santos J (2019) Crowding differential evolution for protein structure prediction. In: International work-conference on the interplay between natural and artificial computation. Springer, pp. 193–203 Varela D, Santos J (2019) Crowding differential evolution for protein structure prediction. In: International work-conference on the interplay between natural and artificial computation. Springer, pp. 193–203
Zurück zum Zitat Vlachakis D, Bencurova E, Papangelopoulos N, Kossida S (2014) Current state-of-the-art molecular dynamics methods and applications. In: Advances in protein chemistry and structural biology, vol. 94. Elsevier, New York, USA, pp 269–313 Vlachakis D, Bencurova E, Papangelopoulos N, Kossida S (2014) Current state-of-the-art molecular dynamics methods and applications. In: Advances in protein chemistry and structural biology, vol. 94. Elsevier, New York, USA, pp 269–313
Zurück zum Zitat Walsh G (2002) Proteins: biochemistry and biotechnology. John Wiley & Sons Walsh G (2002) Proteins: biochemistry and biotechnology. John Wiley & Sons
Zurück zum Zitat Wilk MB, Shapiro S (1968) The joint assessment of normality of several independent samples. Technometrics 10(4):825–839CrossRef Wilk MB, Shapiro S (1968) The joint assessment of normality of several independent samples. Technometrics 10(4):825–839CrossRef
Zurück zum Zitat Zaman AB, Shehu A (2019) Balancing multiple objectives in conformation sampling to control decoy diversity in template-free protein structure prediction. BMC Bioinf 20(1):211CrossRef Zaman AB, Shehu A (2019) Balancing multiple objectives in conformation sampling to control decoy diversity in template-free protein structure prediction. BMC Bioinf 20(1):211CrossRef
Zurück zum Zitat Zemla A (2003) LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Res 31(13):3370–3374CrossRef Zemla A (2003) LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Res 31(13):3370–3374CrossRef
Metadaten
Titel
A self-adaptive evolutionary algorithm using Monte Carlo Fragment insertion and conformation clustering for the protein structure prediction problem
verfasst von
Rafael Stubs Parpinelli
Nilcimar Neitzel Will
Renan Samuel da Silva
Publikationsdatum
11.08.2022
Verlag
Springer Netherlands
Erschienen in
Natural Computing
Print ISSN: 1567-7818
Elektronische ISSN: 1572-9796
DOI
https://doi.org/10.1007/s11047-022-09916-z

Premium Partner