Skip to main content
Erschienen in: Meccanica 15/2018

11.10.2018

A shearable and thickness stretchable finite strain beam model for soft structures

verfasst von: Liwen He, Jia Lou, Youheng Dong, Sritawat Kitipornchai, Jie Yang

Erschienen in: Meccanica | Ausgabe 15/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Soft materials and structures have recently attracted lots of research interests as they provide paramount potential applications in diverse fields including soft robotics, wearable devices, stretchable electronics and biomedical engineering. In a previous work, an Euler–Bernoulli finite strain beam model with thickness stretching effect was proposed for soft thin structures subject to stiff constraint in the width direction. By extending that model to account for the transverse shear effect, a Timoshenko-type finite strain beam model within the plane-strain context is developed in the present work. With some kinematic hypotheses, the finite deformation of the beam is analyzed, constitutive equations are deduced from the theory of finite elasticity, and by employing the standard variational method, the equilibrium equations and associated boundary conditions are derived. In the limit of infinitesimal strain, the new model degenerates to the classical extensible and shearable elastica model. The corresponding incremental equilibrium equations and associated boundary conditions are also obtained. Based on the new beam model, analytical solutions are given for simple deformation modes, including uniaxial tension, simple shear, pure bending, and buckling under an axial load. Furthermore, numerical solution procedures and results are presented for cantilevered beams and simply supported beams with immovable ends. The results are also compared with the previously developed finite strain Euler–Bernoulli beam model to demonstrate the significance of transverse shear effect for soft beams with a small length-to-thickness ratio. The developed beam model will contribute to the design and analysis of soft robots and soft devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Attard MM (2003) Finite strain—beam theory. IJSS 40:4563–4584MATH Attard MM (2003) Finite strain—beam theory. IJSS 40:4563–4584MATH
3.
Zurück zum Zitat Attard MM, Hunt GW (2008) Column buckling with shear deformations—a hyperelastic formulation. Int J Solids Struct 45:4322–4339CrossRefMATH Attard MM, Hunt GW (2008) Column buckling with shear deformations—a hyperelastic formulation. Int J Solids Struct 45:4322–4339CrossRefMATH
4.
Zurück zum Zitat Attard MM, Kim M-Y (2010) Lateral buckling of beams with shear deformations—a hyperelastic formulation. Int J Solids Struct 47:2825–2840CrossRefMATH Attard MM, Kim M-Y (2010) Lateral buckling of beams with shear deformations—a hyperelastic formulation. Int J Solids Struct 47:2825–2840CrossRefMATH
5.
Zurück zum Zitat Auricchio F, Carotenuto P, Reali A (2008) On the geometrically exact beam model: a consistent, effective and simple derivation from three-dimensional finite-elasticity. Int J Solids Struct 45:4766–4781CrossRefMATH Auricchio F, Carotenuto P, Reali A (2008) On the geometrically exact beam model: a consistent, effective and simple derivation from three-dimensional finite-elasticity. Int J Solids Struct 45:4766–4781CrossRefMATH
6.
Zurück zum Zitat Beatty MF (1987) Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues—with examples. ApMRv 40:1699–1734ADS Beatty MF (1987) Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues—with examples. ApMRv 40:1699–1734ADS
7.
Zurück zum Zitat Betsch P, Steinmann P (2002) Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int J Numer Meth Eng 54:1775–1788MathSciNetCrossRefMATH Betsch P, Steinmann P (2002) Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int J Numer Meth Eng 54:1775–1788MathSciNetCrossRefMATH
8.
Zurück zum Zitat Carrera E (2002) Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch Comput Methods Eng 9:87–140MathSciNetCrossRefMATH Carrera E (2002) Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch Comput Methods Eng 9:87–140MathSciNetCrossRefMATH
9.
Zurück zum Zitat Carrera E, Giunta G, Petrolo M (2011) Beam structures: classical and advanced theories. Wiley, HobokenCrossRefMATH Carrera E, Giunta G, Petrolo M (2011) Beam structures: classical and advanced theories. Wiley, HobokenCrossRefMATH
10.
Zurück zum Zitat Chan BQY, Low ZWK, Heng SJW, Chan SY, Owh C, Loh XJ (2016) Recent advances in shape memory soft materials for biomedical applications. ACS Appl Mater Interfaces 8:10070–10087CrossRef Chan BQY, Low ZWK, Heng SJW, Chan SY, Owh C, Loh XJ (2016) Recent advances in shape memory soft materials for biomedical applications. ACS Appl Mater Interfaces 8:10070–10087CrossRef
11.
Zurück zum Zitat Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111:441–453CrossRef Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111:441–453CrossRef
12.
Zurück zum Zitat Ge Q, Qi HJ, Dunn ML (2013) Active materials by four-dimension printing. Appl Phys Lett 103:131901ADSCrossRef Ge Q, Qi HJ, Dunn ML (2013) Active materials by four-dimension printing. Appl Phys Lett 103:131901ADSCrossRef
13.
Zurück zum Zitat Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA (2016) Biomimetic 4D printing. Nat Mater 15:413–418ADSCrossRef Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA (2016) Biomimetic 4D printing. Nat Mater 15:413–418ADSCrossRef
15.
Zurück zum Zitat He L, Lou J, Du J, Wang J (2017) Finite bending of a dielectric elastomer actuator and pre-stretch effects. IJMS 122:120–128 He L, Lou J, Du J, Wang J (2017) Finite bending of a dielectric elastomer actuator and pre-stretch effects. IJMS 122:120–128
16.
Zurück zum Zitat He L, Yan S, Li B, Zhao G, Chu J (2013) Adhesion model of side contact for an extensible elastic fiber. IJSS 50:2659–2666 He L, Yan S, Li B, Zhao G, Chu J (2013) Adhesion model of side contact for an extensible elastic fiber. IJSS 50:2659–2666
17.
Zurück zum Zitat Hong S, Sycks D, Chan HF, Lin S, Lopez GP, Guilak F, Leong KW, Zhao X (2015) 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv Mater 27:4035–4040CrossRef Hong S, Sycks D, Chan HF, Lin S, Lopez GP, Guilak F, Leong KW, Zhao X (2015) 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv Mater 27:4035–4040CrossRef
18.
Zurück zum Zitat Ibrahimbegović A (1995) On finite element implementation of geometrically nonlinear Reissner’s beam theory: three-dimensional curved beam elements. Comput Methods Appl Mech Eng 122:11–26ADSCrossRefMATH Ibrahimbegović A (1995) On finite element implementation of geometrically nonlinear Reissner’s beam theory: three-dimensional curved beam elements. Comput Methods Appl Mech Eng 122:11–26ADSCrossRefMATH
19.
Zurück zum Zitat Irschik H, Gerstmayr J (2009) A continuum mechanics based derivation of Reissner’s large-displacement finite-strain beam theory: the case of plane deformations of originally straight Bernoulli-Euler beams. Acta Mech 206:1–21CrossRefMATH Irschik H, Gerstmayr J (2009) A continuum mechanics based derivation of Reissner’s large-displacement finite-strain beam theory: the case of plane deformations of originally straight Bernoulli-Euler beams. Acta Mech 206:1–21CrossRefMATH
20.
Zurück zum Zitat Irschik H, Gerstmayr J (2011) A continuum-mechanics interpretation of Reissner’s non-linear shear-deformable beam theory. Math Comput Model Dyn Syst 17:19–29MathSciNetCrossRefMATH Irschik H, Gerstmayr J (2011) A continuum-mechanics interpretation of Reissner’s non-linear shear-deformable beam theory. Math Comput Model Dyn Syst 17:19–29MathSciNetCrossRefMATH
21.
Zurück zum Zitat Jeong J-W, Shin G, Park SI, Yu KJ, Xu L, Rogers JA (2015) Soft materials in neuroengineering for hard problems in neuroscience. Neuron 86:175–186CrossRef Jeong J-W, Shin G, Park SI, Yu KJ, Xu L, Rogers JA (2015) Soft materials in neuroengineering for hard problems in neuroscience. Neuron 86:175–186CrossRef
22.
Zurück zum Zitat Kempaiah R, Nie Z (2014) From nature to synthetic systems: shape transformation in soft materials. J Mater Chem B 2:2357–2368CrossRef Kempaiah R, Nie Z (2014) From nature to synthetic systems: shape transformation in soft materials. J Mater Chem B 2:2357–2368CrossRef
23.
Zurück zum Zitat Khoo ZX, Teoh JEM, Liu Y, Chua CK, Yang S, An J, Leong KF, Yeong WY (2015) 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys Prototyp 10:103–122CrossRef Khoo ZX, Teoh JEM, Liu Y, Chua CK, Yang S, An J, Leong KF, Yeong WY (2015) 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys Prototyp 10:103–122CrossRef
24.
Zurück zum Zitat Kim S, Laschi C, Trimmer B (2013) Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol 31:287–294CrossRef Kim S, Laschi C, Trimmer B (2013) Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol 31:287–294CrossRef
25.
Zurück zum Zitat Lu T, Huang J, Jordi C, Kovacs G, Huang R, Clarke DR, Suo Z (2012) Dielectric elastomer actuators under equal-biaxial forces, uniaxial forces, and uniaxial constraint of stiff fibers. Soft Matter 8:6167–6173ADSCrossRef Lu T, Huang J, Jordi C, Kovacs G, Huang R, Clarke DR, Suo Z (2012) Dielectric elastomer actuators under equal-biaxial forces, uniaxial forces, and uniaxial constraint of stiff fibers. Soft Matter 8:6167–6173ADSCrossRef
26.
Zurück zum Zitat Lubbers LA, van Hecke M, Coulais C (2017) A nonlinear beam model to describe the postbuckling of wide neo-Hookean beams. J Mech Phys Solids 106:191–206ADSMathSciNetCrossRef Lubbers LA, van Hecke M, Coulais C (2017) A nonlinear beam model to describe the postbuckling of wide neo-Hookean beams. J Mech Phys Solids 106:191–206ADSMathSciNetCrossRef
27.
Zurück zum Zitat Magnusson A, Ristinmaa M, Ljung C (2001) Behaviour of the extensible elastica solution. IJSS 38:8441–8457MATH Magnusson A, Ristinmaa M, Ljung C (2001) Behaviour of the extensible elastica solution. IJSS 38:8441–8457MATH
28.
Zurück zum Zitat Majidi C (2014) Soft robotics: a perspective—current trends and prospects for the future. Soft Robot 1:5–11CrossRef Majidi C (2014) Soft robotics: a perspective—current trends and prospects for the future. Soft Robot 1:5–11CrossRef
29.
Zurück zum Zitat Mata P, Oller S, Barbat A (2007) Static analysis of beam structures under nonlinear geometric and constitutive behavior. Comput Methods Appl Mech Eng 196:4458–4478ADSMathSciNetCrossRefMATH Mata P, Oller S, Barbat A (2007) Static analysis of beam structures under nonlinear geometric and constitutive behavior. Comput Methods Appl Mech Eng 196:4458–4478ADSMathSciNetCrossRefMATH
30.
Zurück zum Zitat Nachbagauer K, Pechstein AS, Irschik H, Gerstmayr J (2011) A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody SysDyn 26:245–263CrossRefMATH Nachbagauer K, Pechstein AS, Irschik H, Gerstmayr J (2011) A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody SysDyn 26:245–263CrossRefMATH
31.
Zurück zum Zitat Ogden RW (1997) Non-linear elastic deformations. Courier Corporation, Chelmsford Ogden RW (1997) Non-linear elastic deformations. Courier Corporation, Chelmsford
32.
Zurück zum Zitat Reddy JN (2006) Theory and analysis of elastic plates and shells. CRC Press, Boca Raton Reddy JN (2006) Theory and analysis of elastic plates and shells. CRC Press, Boca Raton
33.
Zurück zum Zitat Reissner E (1972) On one-dimensional finite-strain beam theory: the plane problem. Zeitschrift für angewandte Mathematik und Physik: ZAMP 23:795–804ADSCrossRefMATH Reissner E (1972) On one-dimensional finite-strain beam theory: the plane problem. Zeitschrift für angewandte Mathematik und Physik: ZAMP 23:795–804ADSCrossRefMATH
34.
Zurück zum Zitat Rogers JA, Someya T, Huang Y (2010) Materials and mechanics for stretchable electronics. Science 327:1603–1607ADSCrossRef Rogers JA, Someya T, Huang Y (2010) Materials and mechanics for stretchable electronics. Science 327:1603–1607ADSCrossRef
35.
Zurück zum Zitat Rudykh S, Bhattacharya K (2012) Snap-through actuation of thick-wall electroactive balloons. Int J Non-Linear Mech 47:206–209CrossRef Rudykh S, Bhattacharya K (2012) Snap-through actuation of thick-wall electroactive balloons. Int J Non-Linear Mech 47:206–209CrossRef
36.
Zurück zum Zitat Rus D, Tolley MT (2015) Design, fabrication and control of soft robots. Nature 521:467–475ADSCrossRef Rus D, Tolley MT (2015) Design, fabrication and control of soft robots. Nature 521:467–475ADSCrossRef
37.
Zurück zum Zitat Simo JC (1985) A finite strain beam formulation. The three-dimensional dynamic problem. Part I. CMAME 49:55–70ADSMATH Simo JC (1985) A finite strain beam formulation. The three-dimensional dynamic problem. Part I. CMAME 49:55–70ADSMATH
38.
Zurück zum Zitat Simo JC, Vu-Quoc L (1991) A geometrically-exact rod model incorporating shear and torsion-warping deformation. Int J Solids Struct 27:371–393MathSciNetCrossRefMATH Simo JC, Vu-Quoc L (1991) A geometrically-exact rod model incorporating shear and torsion-warping deformation. Int J Solids Struct 27:371–393MathSciNetCrossRefMATH
39.
Zurück zum Zitat Son D, Lee J, Qiao S, Ghaffari R, Kim J, Lee JE, Song C, Kim SJ, Lee DJ, Jun SW (2014) Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat Nanotechnol 9:397–404ADSCrossRef Son D, Lee J, Qiao S, Ghaffari R, Kim J, Lee JE, Song C, Kim SJ, Lee DJ, Jun SW (2014) Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat Nanotechnol 9:397–404ADSCrossRef
40.
Zurück zum Zitat Song J (2015) Mechanics of stretchable electronics. Curr Opin Solid State Mater Sci 19:160–170ADSCrossRef Song J (2015) Mechanics of stretchable electronics. Curr Opin Solid State Mater Sci 19:160–170ADSCrossRef
41.
Zurück zum Zitat Suo Z (2012) Mechanics of stretchable electronics and soft machines. MRS Bull 37:218–225CrossRef Suo Z (2012) Mechanics of stretchable electronics and soft machines. MRS Bull 37:218–225CrossRef
42.
Zurück zum Zitat Ventola CL (2014) Medical applications for 3D printing: current and projected uses. Pharm Ther 39:704 Ventola CL (2014) Medical applications for 3D printing: current and projected uses. Pharm Ther 39:704
43.
Zurück zum Zitat Yükseler RF (2015) A theory for rubber-like rods. Int J Solids Struct 69:350–359CrossRef Yükseler RF (2015) A theory for rubber-like rods. Int J Solids Struct 69:350–359CrossRef
44.
Zurück zum Zitat Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26:5310–5336CrossRef Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26:5310–5336CrossRef
45.
Zurück zum Zitat Zhao X, Suo Z (2007) Method to analyze electromechanical stability of dielectric elastomers. Appl Phys Lett 91:061921ADSCrossRef Zhao X, Suo Z (2007) Method to analyze electromechanical stability of dielectric elastomers. Appl Phys Lett 91:061921ADSCrossRef
46.
Zurück zum Zitat Zupan E, Saje M, Zupan D (2013) On a virtual work consistent three-dimensional Reissner–Simo beam formulation using the quaternion algebra. AcMec 224:1709–1729MathSciNetMATH Zupan E, Saje M, Zupan D (2013) On a virtual work consistent three-dimensional Reissner–Simo beam formulation using the quaternion algebra. AcMec 224:1709–1729MathSciNetMATH
Metadaten
Titel
A shearable and thickness stretchable finite strain beam model for soft structures
verfasst von
Liwen He
Jia Lou
Youheng Dong
Sritawat Kitipornchai
Jie Yang
Publikationsdatum
11.10.2018
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 15/2018
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-018-0905-4

Weitere Artikel der Ausgabe 15/2018

Meccanica 15/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.