Skip to main content
Erschienen in: Meccanica 15/2018

20.10.2018

Simulation of fiber-reinforced viscoelastic structures subjected to finite strains: multiplicative approach

verfasst von: I. I. Tagiltsev, P. P. Laktionov, A. V. Shutov

Erschienen in: Meccanica | Ausgabe 15/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The study is devoted to the geometrically nonlinear simulation of fiber-reinforced composite structures. The applicability of the multiplicative approach to the simulation of viscoelastic properties of a composite material is assessed, certain improvements are suggested. For a greater accuracy in applications involving local compressive fiber buckling, a new family of hyperelastic potentials is introduced. This family allows us to account for the variable critical compressive stress, which depends on the fiber-matrix interaction. For the simulation of viscoelasticity, the well-established Sidoroff decomposition of the deformation gradient is implemented. To account for the viscosity of the matrix material, the model of Simo and Miehe (Comput Methods Appl Mech Eng 98:41–104, 1992) is used; highly efficient iteration-free algorithms are implemented. The viscosity of the fiber is likewise described by the multiplicative decomposition of the deformation gradient, leading to a scalar differential equation; an efficient iteration-free algorithm is proposed for the implicit time stepping. The accuracy and convergence of the new iteration-free method is tested and compared to that of the standard scheme implementing the Newton iteration. To demonstrate the applicability of the approach, a pressurized multi-layer composite pipe is modelled; the so-called stretch inversion phenomenon is reproduced and explained. The stress distribution is obtained by a semi-analytical procedure; it may serve as a benchmark for FEM computations. Finally, the issue of the parameter identification is addressed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Beatty MF (1987) Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues—with examples. Appl Mech Rev 40(12):1699–1734ADSCrossRef Beatty MF (1987) Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues—with examples. Appl Mech Rev 40(12):1699–1734ADSCrossRef
2.
Zurück zum Zitat Chagnon G, Rebouah M, Favier D (2015) Hyperelastic energy densities for soft biological tissues: a review. J Elast 120:129–160MathSciNetCrossRefMATH Chagnon G, Rebouah M, Favier D (2015) Hyperelastic energy densities for soft biological tissues: a review. J Elast 120:129–160MathSciNetCrossRefMATH
3.
Zurück zum Zitat Chuong CJC, Fung YC (1983) Three-dimensional stress distribution in arteries. J Biomech Eng 105(3):268–274CrossRef Chuong CJC, Fung YC (1983) Three-dimensional stress distribution in arteries. J Biomech Eng 105(3):268–274CrossRef
4.
Zurück zum Zitat Cyron CJ, Humphrey JD (2016) Growth and remodeling of load-bearing biological soft tissues. Meccanica 52(3):645–664MathSciNetCrossRef Cyron CJ, Humphrey JD (2016) Growth and remodeling of load-bearing biological soft tissues. Meccanica 52(3):645–664MathSciNetCrossRef
5.
Zurück zum Zitat D’Amore A, Luketich SK, Raffa GM, Olia S, Menallo G, Mazzola A, D’Accardi F, Grunberg T, Gu X, Pilato M, Kameneva MV, Badhwar V, Wagner WR (2018) Heart valve scaffold fabrication: bioinspired control of macro-scale morphology, mechanics and micro-structure. Biomaterials 150:25–37CrossRef D’Amore A, Luketich SK, Raffa GM, Olia S, Menallo G, Mazzola A, D’Accardi F, Grunberg T, Gu X, Pilato M, Kameneva MV, Badhwar V, Wagner WR (2018) Heart valve scaffold fabrication: bioinspired control of macro-scale morphology, mechanics and micro-structure. Biomaterials 150:25–37CrossRef
6.
Zurück zum Zitat Delfino A, Stergiopulos N, Moore JE, Meister JJ (1997) Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J Biomech 30:777–786CrossRef Delfino A, Stergiopulos N, Moore JE, Meister JJ (1997) Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J Biomech 30:777–786CrossRef
7.
Zurück zum Zitat Del Piero G, Deseri L (1997) On the concepts of state and free energy in linear viscoelasticity. Arch Ration Mech Anal 138:1–35MathSciNetCrossRefMATH Del Piero G, Deseri L (1997) On the concepts of state and free energy in linear viscoelasticity. Arch Ration Mech Anal 138:1–35MathSciNetCrossRefMATH
8.
Zurück zum Zitat Deseri L, Gentili G, Golden M (1999) An explicit formula for the minimum free energy in linear viscoelasticity. J Elast 54:141–185MathSciNetCrossRefMATH Deseri L, Gentili G, Golden M (1999) An explicit formula for the minimum free energy in linear viscoelasticity. J Elast 54:141–185MathSciNetCrossRefMATH
11.
Zurück zum Zitat Deseri L, Owen DR (2015) Stable disarrangement phases arising from expansion/contraction or from simple shearing of a model granular medium. Int J Eng Sci 96:111–130MathSciNetCrossRef Deseri L, Owen DR (2015) Stable disarrangement phases arising from expansion/contraction or from simple shearing of a model granular medium. Int J Eng Sci 96:111–130MathSciNetCrossRef
12.
Zurück zum Zitat Deseri L, Owen DR (2016) Submacroscopic disarrangements induce a unique, additive and universal decomposition of continuum Fluxess. J Elast 122:223–230MathSciNetCrossRefMATH Deseri L, Owen DR (2016) Submacroscopic disarrangements induce a unique, additive and universal decomposition of continuum Fluxess. J Elast 122:223–230MathSciNetCrossRefMATH
13.
Zurück zum Zitat Goldberg N, Donner H, Ihlemann J (2015) Evaluation of hyperelastic models for unidirectional short fibre reinforced materials using a representative volume element with refined boundary conditions. Tech Mech 35(2):80–99 Goldberg N, Donner H, Ihlemann J (2015) Evaluation of hyperelastic models for unidirectional short fibre reinforced materials using a representative volume element with refined boundary conditions. Tech Mech 35(2):80–99
14.
Zurück zum Zitat Golovin SV, Khe AK, Gadylshina KA (2016) Hydraulic model of cerebral arteriovenous malformations. J Fluid Mech 797:110–129ADSMathSciNetCrossRef Golovin SV, Khe AK, Gadylshina KA (2016) Hydraulic model of cerebral arteriovenous malformations. J Fluid Mech 797:110–129ADSMathSciNetCrossRef
15.
Zurück zum Zitat Holzapfel GA, Gasser TC (2001) A viscoelastic model for fiber-reinforced composites at finite stains: Continuum basis, computational aspects and applications. Comput Methods Appl Mech Eng 190(34):4379–4403ADSCrossRef Holzapfel GA, Gasser TC (2001) A viscoelastic model for fiber-reinforced composites at finite stains: Continuum basis, computational aspects and applications. Comput Methods Appl Mech Eng 190(34):4379–4403ADSCrossRef
16.
Zurück zum Zitat Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast Phys Sci Solids 61:1–48MathSciNetCrossRefMATH Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast Phys Sci Solids 61:1–48MathSciNetCrossRefMATH
17.
Zurück zum Zitat Holzapfel GA, Gasser TC, Stadler M (2002) A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur J Mech - A/Solids 21:441–463CrossRefMATH Holzapfel GA, Gasser TC, Stadler M (2002) A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur J Mech - A/Solids 21:441–463CrossRefMATH
18.
Zurück zum Zitat Humphrey JD, Rajagopal KR (2002) A constrained mixture model for growth and remodeling of soft tissues. Math Models Methods Appl Sci 12(03):407430MathSciNetCrossRefMATH Humphrey JD, Rajagopal KR (2002) A constrained mixture model for growth and remodeling of soft tissues. Math Models Methods Appl Sci 12(03):407430MathSciNetCrossRefMATH
19.
Zurück zum Zitat Khe AK, Chupakhin AP, Cherevko AA, Eliava SS, Pipipenko YuV (2015) Viscous dissipation energy as a risk factor in multiple cerebral aneurysms. Russ J Numer Anal Math Model 30(5):277–287MathSciNetCrossRefMATH Khe AK, Chupakhin AP, Cherevko AA, Eliava SS, Pipipenko YuV (2015) Viscous dissipation energy as a risk factor in multiple cerebral aneurysms. Russ J Numer Anal Math Model 30(5):277–287MathSciNetCrossRefMATH
20.
Zurück zum Zitat Koolstra JH, Tanaka E, Van Eijden TMGJ (2007) Viscoelastic material model for the temporomandibular joint disc derived from dynamic shear tests or strain-relaxation tests. J Biomech 40:2330–2334CrossRef Koolstra JH, Tanaka E, Van Eijden TMGJ (2007) Viscoelastic material model for the temporomandibular joint disc derived from dynamic shear tests or strain-relaxation tests. J Biomech 40:2330–2334CrossRef
21.
Zurück zum Zitat Landgraf R, Shutov AV, Ihleman J (2015) Efficient time integration in multiplicative inelasticity. Proc Appl.Math Mech 15:325–326CrossRef Landgraf R, Shutov AV, Ihleman J (2015) Efficient time integration in multiplicative inelasticity. Proc Appl.Math Mech 15:325–326CrossRef
22.
Zurück zum Zitat Li H, Zhang B (2015) A new viscoelastic model based on generalized method of cells for fiber-reinforced composites. Int J Plast 65:22–32CrossRef Li H, Zhang B (2015) A new viscoelastic model based on generalized method of cells for fiber-reinforced composites. Int J Plast 65:22–32CrossRef
23.
Zurück zum Zitat Nedjar B (2011) A time dependent model for unidirectional fibre-reinforced composites with viscoelastic matrices. Int J Solids Struct 48:2333–2339CrossRef Nedjar B (2011) A time dependent model for unidirectional fibre-reinforced composites with viscoelastic matrices. Int J Solids Struct 48:2333–2339CrossRef
24.
Zurück zum Zitat Owen DR (2017) Elasticity with qradient-disarrangements: a multiscale perspective for strain-gradient theories of elasticity and of plasticity. J Elast 127:115–150CrossRefMATH Owen DR (2017) Elasticity with qradient-disarrangements: a multiscale perspective for strain-gradient theories of elasticity and of plasticity. J Elast 127:115–150CrossRefMATH
25.
Zurück zum Zitat Roach MR, Burton AC (1957) The reason for the shape of the distensibility curves of arteries. Can J Biochem Physiol 35:681–690 CrossRef Roach MR, Burton AC (1957) The reason for the shape of the distensibility curves of arteries. Can J Biochem Physiol 35:681–690 CrossRef
26.
Zurück zum Zitat Salacinski H, Goldner S, Giudiceandrea A, Hamilton G, Seifalian A (2001) The mechanical behavior of vascular grafts: a review. J Biomater Appl 15:241–278CrossRef Salacinski H, Goldner S, Giudiceandrea A, Hamilton G, Seifalian A (2001) The mechanical behavior of vascular grafts: a review. J Biomater Appl 15:241–278CrossRef
28.
Zurück zum Zitat Shutov AV, Ihlemann J (2014) Analysis of some basic approaches to finite strain elasto-plasticity in view of reference change. Int J Plast 63:183–197CrossRef Shutov AV, Ihlemann J (2014) Analysis of some basic approaches to finite strain elasto-plasticity in view of reference change. Int J Plast 63:183–197CrossRef
29.
Zurück zum Zitat Shutov AV, Kreißig R (2010) Geometric integrators for multiplicative viscoplasticity: analysis of error accumulation. Comput Methods Appl Mech Eng 199:700–711ADSMathSciNetCrossRefMATH Shutov AV, Kreißig R (2010) Geometric integrators for multiplicative viscoplasticity: analysis of error accumulation. Comput Methods Appl Mech Eng 199:700–711ADSMathSciNetCrossRefMATH
30.
Zurück zum Zitat Shutov AV, Landgraf R, Ihlemann J (2013) An explicit solution for implicit time stepping in multiplicative finite strain viscoelasticity. Comput Methods Appl Mech Eng 265:213–225ADSMathSciNetCrossRefMATH Shutov AV, Landgraf R, Ihlemann J (2013) An explicit solution for implicit time stepping in multiplicative finite strain viscoelasticity. Comput Methods Appl Mech Eng 265:213–225ADSMathSciNetCrossRefMATH
31.
Zurück zum Zitat Shutov AV (2016) Seven different ways to model viscoelasticity in a geometrically exact setting. In: Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering, vol 1, pp 1959–1970 Shutov AV (2016) Seven different ways to model viscoelasticity in a geometrically exact setting. In: Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering, vol 1, pp 1959–1970
32.
Zurück zum Zitat Shutov AV (2017) Efficient time stepping for the multiplicative Maxwell fluid including the Mooney–Rivlin hyperelasticity. Int J Numer Methods Eng 113(12):1851–1869MathSciNetCrossRef Shutov AV (2017) Efficient time stepping for the multiplicative Maxwell fluid including the Mooney–Rivlin hyperelasticity. Int J Numer Methods Eng 113(12):1851–1869MathSciNetCrossRef
33.
Zurück zum Zitat Springhetti R, Selyutina NS (2017) Viscoelastic modeling of articular cartilage under impact loading. Meccanica 53(3):519–530MathSciNetCrossRefMATH Springhetti R, Selyutina NS (2017) Viscoelastic modeling of articular cartilage under impact loading. Meccanica 53(3):519–530MathSciNetCrossRefMATH
34.
Zurück zum Zitat Simo JC, Miehe C (1992) Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput Methods Appl Mech Eng 98:41–104ADSCrossRefMATH Simo JC, Miehe C (1992) Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput Methods Appl Mech Eng 98:41–104ADSCrossRefMATH
35.
Zurück zum Zitat Stewart SFC, Lyman DJ (1992) Effects of a vascular graft/natural artery compliance mismatch on pulsatile flow. J Biomech 25(3):297–310CrossRef Stewart SFC, Lyman DJ (1992) Effects of a vascular graft/natural artery compliance mismatch on pulsatile flow. J Biomech 25(3):297–310CrossRef
36.
Zurück zum Zitat Vainshav RN, Vossoughi J (1983) Estimation of residual strains in aortic segments. Biomedical Engineering II Recent Developments. In: Proceedings of the Second Southern Biomedical Engineering Conference, pp 330–333 Vainshav RN, Vossoughi J (1983) Estimation of residual strains in aortic segments. Biomedical Engineering II Recent Developments. In: Proceedings of the Second Southern Biomedical Engineering Conference, pp 330–333
37.
Zurück zum Zitat Vainshav RN, Young JT, Patel DJ (1973) Distribution of stresses and of strain-energy density through the wall thickness in a canine aortic segment. Circ Res 32:577–583CrossRef Vainshav RN, Young JT, Patel DJ (1973) Distribution of stresses and of strain-energy density through the wall thickness in a canine aortic segment. Circ Res 32:577–583CrossRef
38.
Zurück zum Zitat Waffenschmidt T, Polindara CA, Menzel A, Blanco S (2014) A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials. Comput Methods Appl Mech Eng 268:801–842ADSMathSciNetCrossRefMATH Waffenschmidt T, Polindara CA, Menzel A, Blanco S (2014) A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials. Comput Methods Appl Mech Eng 268:801–842ADSMathSciNetCrossRefMATH
39.
Zurück zum Zitat Von Hoegen MH, Marino M, Schröder J, Wriggers P (2017) Correlation between parameters of hyperelastic phenomenological strain energies and collagen-related soft biological tissue properties. Comput Plast XIV Fundam Appl Von Hoegen MH, Marino M, Schröder J, Wriggers P (2017) Correlation between parameters of hyperelastic phenomenological strain energies and collagen-related soft biological tissue properties. Comput Plast XIV Fundam Appl
40.
Zurück zum Zitat Wiesemann S (1995) Development of constitutive equations for the finite element analysis of fiber-reinforced elastomeric materials. Master’s thesis, Universität der Bundeswehr Hamburg Wiesemann S (1995) Development of constitutive equations for the finite element analysis of fiber-reinforced elastomeric materials. Master’s thesis, Universität der Bundeswehr Hamburg
Metadaten
Titel
Simulation of fiber-reinforced viscoelastic structures subjected to finite strains: multiplicative approach
verfasst von
I. I. Tagiltsev
P. P. Laktionov
A. V. Shutov
Publikationsdatum
20.10.2018
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 15/2018
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-018-0909-0

Weitere Artikel der Ausgabe 15/2018

Meccanica 15/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.