Skip to main content
Erschienen in: Meccanica 15/2018

01.11.2018

Flutter analysis of a viscoelastic tapered wing under bending–torsion loading

verfasst von: Youssef S. Matter, Tariq T. Darabseh, Abdel-Hamid I. Mourad

Erschienen in: Meccanica | Ausgabe 15/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The dynamic stability of a tapered viscoelastic wing subjected to unsteady aerodynamic forces is investigated. The wing is considered as a cantilever tapered Euler–Bernoulli beam. The beam is made of a linear viscoelastic material where Kelvin–Voigt model is assumed to represent the viscoelastic behavior of the material. The governing equations of motion are derived through the extended Hamilton’s principle. The resulting partial differential equations are solved via Galerkin’s method along with the classical flutter investigation approach. The developed model is validated against the well-known Goland wing and HALE wing and good agreement is obtained. Different solution methods, namely; the k method, the p-k method, and the flutter determinant method are compared for the case of elastic wing. However, when the viscoelastic damping is introduced, the k and p-k methods become less effective. The flutter determinant method is modified and employed to carry out non-dimensional parametric study on the Goland wing. The study includes the effects of parameters such as the taper ratio, the density ratio, the viscoelastic damping of wing structure and many other parameters on the flutter speed and flutter frequency. The study reveals that a tapered wing would be more dynamically stable than a uniform wing. It is also observed that the viscoelastic damping provides wider stability region for the wing. The investigation shows that the density ratio, bending-to-torsion frequency ratio, and the radius of gyration have significant effects on the dynamic stability of the wing. Based on the obtained results, a wing with an elastic center and inertial center that are located closer to the mid-chord would be more dynamically stable.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Abdelkefi A, Nayfeh AH, Hajj MR (2012) Design of piezoaeroelastic energy harvesters. Nonlinear Dyn 68:519–530CrossRef Abdelkefi A, Nayfeh AH, Hajj MR (2012) Design of piezoaeroelastic energy harvesters. Nonlinear Dyn 68:519–530CrossRef
2.
Zurück zum Zitat Abdelkefi A, Vasconcellos R, Nayfeh AH, Hajj MR (2013) An analytical and experimental investigation into limit-cycle oscillations of an aeroelastic system. Nonlinear Dyn 71(159):173MathSciNetMATH Abdelkefi A, Vasconcellos R, Nayfeh AH, Hajj MR (2013) An analytical and experimental investigation into limit-cycle oscillations of an aeroelastic system. Nonlinear Dyn 71(159):173MathSciNetMATH
3.
Zurück zum Zitat Abdelkefi A, Vasconcellos R, Marques FD, Hajj MR (2012) Modeling and identification of freeplay nonlinearity. J Sound Vib 331:1898–1907ADSCrossRef Abdelkefi A, Vasconcellos R, Marques FD, Hajj MR (2012) Modeling and identification of freeplay nonlinearity. J Sound Vib 331:1898–1907ADSCrossRef
4.
Zurück zum Zitat Acum WEA (1959) The comparison of theory and experiment of oscillating wings, vol. II, chpater 10, AGARD manual on aeroelasticity Acum WEA (1959) The comparison of theory and experiment of oscillating wings, vol. II, chpater 10, AGARD manual on aeroelasticity
5.
Zurück zum Zitat Baker WE, Woolam WE, Young D (1967) Air and internal damping of thin cantilever beams. Int J Mech Sci 9:743–766CrossRef Baker WE, Woolam WE, Young D (1967) Air and internal damping of thin cantilever beams. Int J Mech Sci 9:743–766CrossRef
6.
Zurück zum Zitat Beheshtinia F, Firouz-Abadi RD, Rahmanian M (2017) Viscous damping effect on the aeroelastic stability of subsonic wings. J Fluids Struct 73:1–15CrossRef Beheshtinia F, Firouz-Abadi RD, Rahmanian M (2017) Viscous damping effect on the aeroelastic stability of subsonic wings. J Fluids Struct 73:1–15CrossRef
7.
Zurück zum Zitat Dowell EH (1967) Nonlinear oscillations of a fluttering plate II. AIAA J 5:1856–1862ADSCrossRef Dowell EH (1967) Nonlinear oscillations of a fluttering plate II. AIAA J 5:1856–1862ADSCrossRef
8.
Zurück zum Zitat Dowell EH, Voss HM (1965) Theoretical and experimental panel flutter studies in the Mach number range 1.0 to 5.0. AIAA J 3:2292–2304ADSCrossRef Dowell EH, Voss HM (1965) Theoretical and experimental panel flutter studies in the Mach number range 1.0 to 5.0. AIAA J 3:2292–2304ADSCrossRef
9.
Zurück zum Zitat Durmaz S, Ozgumus OO, Kaya MO (2007) Aeroelastic analysis of a tapered aircraft wing. In: AIAC-4th, Proceedings of the 4th Ankara International Aerospace Conference, Ankara Durmaz S, Ozgumus OO, Kaya MO (2007) Aeroelastic analysis of a tapered aircraft wing. In: AIAC-4th, Proceedings of the 4th Ankara International Aerospace Conference, Ankara
10.
Zurück zum Zitat Fung YC (1995) An introduction to the theory of aeroelasticity, 2nd edn. Dover Publications, New York Fung YC (1995) An introduction to the theory of aeroelasticity, 2nd edn. Dover Publications, New York
11.
Zurück zum Zitat Ghommem M, Hajj MR, Nayfeh AH (2010) Uncertainty analysis near bifurcation of an aeroelastic system. J Sound Vib 329:3335–3347ADSCrossRef Ghommem M, Hajj MR, Nayfeh AH (2010) Uncertainty analysis near bifurcation of an aeroelastic system. J Sound Vib 329:3335–3347ADSCrossRef
12.
Zurück zum Zitat Goland M (1945) The flutter of a uniform cantilever wing. J Appl Mech Trans Asme 12:A197–A208 Goland M (1945) The flutter of a uniform cantilever wing. J Appl Mech Trans Asme 12:A197–A208
13.
Zurück zum Zitat Goland M, Luke YL (1948) The flutter of a uniform wing with tip weights. J Appl Mech 15:13–20MATH Goland M, Luke YL (1948) The flutter of a uniform wing with tip weights. J Appl Mech 15:13–20MATH
14.
Zurück zum Zitat Haddadpour H, Firouz-Abadi RD (2006) Evaluation of quasi-steady aerodynamic modeling for flutter prediction of aircraft wings in incompressible flow. Thin-walled Struct 44:931–936CrossRef Haddadpour H, Firouz-Abadi RD (2006) Evaluation of quasi-steady aerodynamic modeling for flutter prediction of aircraft wings in incompressible flow. Thin-walled Struct 44:931–936CrossRef
15.
Zurück zum Zitat Hilton HH (1957) Pitching instability of rigid lifting surfaces on viscoelastic supports in subsonic or supersonic potential flow. In: Proceedings of the Third Midwestern Conference on Solid Mechanics, University of Michigan Hilton HH (1957) Pitching instability of rigid lifting surfaces on viscoelastic supports in subsonic or supersonic potential flow. In: Proceedings of the Third Midwestern Conference on Solid Mechanics, University of Michigan
16.
Zurück zum Zitat Hilton HH (1960) The divergence of supersonic, linear viscoelastic lifting surfaces, including chordwise bending. J Aero/Space Sci 27:926–934CrossRefMATH Hilton HH (1960) The divergence of supersonic, linear viscoelastic lifting surfaces, including chordwise bending. J Aero/Space Sci 27:926–934CrossRefMATH
17.
Zurück zum Zitat Hilton HH (1991) Viscoelastic and structural damping analysis. In: Proceedings on Damping’91, Air Force Technical Report WL TR-91, vol 3078, Wright Patterson AFB, pp 1–15 Hilton HH (1991) Viscoelastic and structural damping analysis. In: Proceedings on Damping’91, Air Force Technical Report WL TR-91, vol 3078, Wright Patterson AFB, pp 1–15
18.
Zurück zum Zitat Hilton HH, VAIL C (1993) Bending–torsion flutter of linear viscoelastic wings including structural damping. In: Proceedings of the 34th Structures, Structural Dynamics and Materials Conference, La Jolla Hilton HH, VAIL C (1993) Bending–torsion flutter of linear viscoelastic wings including structural damping. In: Proceedings of the 34th Structures, Structural Dynamics and Materials Conference, La Jolla
19.
Zurück zum Zitat Hodges DH, Pierce GA (2011) Introduction to structural dynamics and aeroelasticity, 2nd edn. Cambridge University Press, New YorkCrossRef Hodges DH, Pierce GA (2011) Introduction to structural dynamics and aeroelasticity, 2nd edn. Cambridge University Press, New YorkCrossRef
21.
Zurück zum Zitat Lahellec N, Suquet P (2007) Effective behavior of linear viscoelastic composites: a time-integration approach. Int J Solids Struct 44:507–529MathSciNetCrossRefMATH Lahellec N, Suquet P (2007) Effective behavior of linear viscoelastic composites: a time-integration approach. Int J Solids Struct 44:507–529MathSciNetCrossRefMATH
22.
Zurück zum Zitat Mahran M, Negm H, El-Sabbagh A (2015) Aero-elastic characteristics of tapered plate wings. Finite Elem Anal Des 94:24–32CrossRef Mahran M, Negm H, El-Sabbagh A (2015) Aero-elastic characteristics of tapered plate wings. Finite Elem Anal Des 94:24–32CrossRef
23.
Zurück zum Zitat Martins PC, Rade DA, Marques FD (2013) Dynamic stability analysis of aeroviscoelastic systems. In: Proceedings of the 22nd international congress of mechanical engineering (COBEM 2013), Ribeirão Preto Martins PC, Rade DA, Marques FD (2013) Dynamic stability analysis of aeroviscoelastic systems. In: Proceedings of the 22nd international congress of mechanical engineering (COBEM 2013), Ribeirão Preto
24.
Zurück zum Zitat Meirovitch L (1975) Elements of vibration analysis. McGraw-Hill, New YorkMATH Meirovitch L (1975) Elements of vibration analysis. McGraw-Hill, New YorkMATH
25.
Zurück zum Zitat Moosavi MR, Oskouei AN, Khelil A (2005) Flutter of subsonic wing. Thin-walled Struct 43:617–627CrossRef Moosavi MR, Oskouei AN, Khelil A (2005) Flutter of subsonic wing. Thin-walled Struct 43:617–627CrossRef
26.
Zurück zum Zitat Nayfeh AH, Ghommem M, Hajj MR (2012) Normal form representation of the aeroelastic response of the Goland wing. Nonlinear Dyn 67:1847–1861MathSciNetCrossRefMATH Nayfeh AH, Ghommem M, Hajj MR (2012) Normal form representation of the aeroelastic response of the Goland wing. Nonlinear Dyn 67:1847–1861MathSciNetCrossRefMATH
27.
Zurück zum Zitat Nayfeh AH, Hammad BK, Hajj MR (2012) Discretization effects on flutter aspects and control of wing/store configurations. J Vib Control 18:1043–1055MathSciNetCrossRefMATH Nayfeh AH, Hammad BK, Hajj MR (2012) Discretization effects on flutter aspects and control of wing/store configurations. J Vib Control 18:1043–1055MathSciNetCrossRefMATH
28.
Zurück zum Zitat Patil MJ, Yurkovich RN, Hodges DH (2004) Incorrectness of the k method for flutter calculations. J Aircr 41:402–405CrossRef Patil MJ, Yurkovich RN, Hodges DH (2004) Incorrectness of the k method for flutter calculations. J Aircr 41:402–405CrossRef
29.
Zurück zum Zitat Patil MJ, Hodges DH, Cesnik CES (2001) Nonlinear aeroelasticity and flight dynamics of high altitude long-endurance aircraft. J Aircr 19:88–94CrossRef Patil MJ, Hodges DH, Cesnik CES (2001) Nonlinear aeroelasticity and flight dynamics of high altitude long-endurance aircraft. J Aircr 19:88–94CrossRef
30.
Zurück zum Zitat Theodorsen T (1935). General theory of aerodynamic instability and the mechanism of flutter. NACA report 496 Theodorsen T (1935). General theory of aerodynamic instability and the mechanism of flutter. NACA report 496
31.
Zurück zum Zitat Ungar E (1971) Chapter 14 in Noise and vibration control. In: Beranek LL (ed). McGraw Hill, New York Ungar E (1971) Chapter 14 in Noise and vibration control. In: Beranek LL (ed). McGraw Hill, New York
32.
Zurück zum Zitat Vasconcellos R, Abdelkefi A, Marques FD, Hajj MR (2012) Representation and analysis of control surface freeplay nonlinearity. J Fluids Struct 31:79–91CrossRef Vasconcellos R, Abdelkefi A, Marques FD, Hajj MR (2012) Representation and analysis of control surface freeplay nonlinearity. J Fluids Struct 31:79–91CrossRef
33.
Zurück zum Zitat Vasconcellos R, Abdelkefi A (2015) Nonlinear dynamical analysis of an aeroelastic system with multi-segmented moment in the pitch degree-of-freedom. Commun Nonlinear Sci Numer Simul 20:324–334ADSCrossRef Vasconcellos R, Abdelkefi A (2015) Nonlinear dynamical analysis of an aeroelastic system with multi-segmented moment in the pitch degree-of-freedom. Commun Nonlinear Sci Numer Simul 20:324–334ADSCrossRef
34.
Zurück zum Zitat Yi S, Ahmad MF, Hilton HH (1996) Dynamic responses of plates with viscoelastic free layer damping treatment. J Vib Acoust 118:362–367CrossRef Yi S, Ahmad MF, Hilton HH (1996) Dynamic responses of plates with viscoelastic free layer damping treatment. J Vib Acoust 118:362–367CrossRef
Metadaten
Titel
Flutter analysis of a viscoelastic tapered wing under bending–torsion loading
verfasst von
Youssef S. Matter
Tariq T. Darabseh
Abdel-Hamid I. Mourad
Publikationsdatum
01.11.2018
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 15/2018
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-018-0915-2

Weitere Artikel der Ausgabe 15/2018

Meccanica 15/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.