Skip to main content
Erschienen in: Computational Mechanics 2/2017

08.11.2016 | Original Paper

A simple triangular finite element for nonlinear thin shells: statics, dynamics and anisotropy

verfasst von: Nils Viebahn, Paulo M. Pimenta, Jörg Schröder

Erschienen in: Computational Mechanics | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work presents a simple finite element implementation of a geometrically exact and fully nonlinear Kirchhoff–Love shell model. Thus, the kinematics are based on a deformation gradient written in terms of the first- and second-order derivatives of the displacements. The resulting finite element formulation provides \(C^1\)-continuity using a penalty approach, which penalizes the kinking at the edges of neighboring elements. This approach enables the application of well-known \(C^0\)-continuous interpolations for the displacements, which leads to a simple finite element formulation, where the only unknowns are the nodal displacements. On the basis of polyconvex strain energy functions, the numerical framework for the simulation of isotropic and anisotropic thin shells is presented. A consistent plane stress condition is incorporated at the constitutive level of the model. A triangular finite element, with a quadratic interpolation for the displacements and a one-point integration for the enforcement of the \(C^1\)-continuity at the element interfaces leads to a robust shell element. Due to the simple nature of the element, even complex geometries can be meshed easily, which include folded and branched shells. The reliability and flexibility of the element formulation is shown in a couple of numerical examples, including also time dependent boundary value problems. A plane reference configuration is assumed for the shell mid-surface, but initially curved shells can be accomplished if one regards the initial configuration as a stress-free deformed state from the plane position, as done in previous works.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Therein the author introduced the double-cross product: \(.\)
 
Literatur
2.
Zurück zum Zitat Ball J (1977a) Convexity conditions and existence theorems in non-linear elasticity. Arch Ration Mech Anal 63:337–403CrossRefMATH Ball J (1977a) Convexity conditions and existence theorems in non-linear elasticity. Arch Ration Mech Anal 63:337–403CrossRefMATH
3.
Zurück zum Zitat Ball J (1977b) Constitutive inequalities and existence theorems in nonlinear elastostatics. In: Knops RJ (ed) Symposium on non-well posed problems and logarithmic convexity. Springer-lecture notes in mathematics, vol 316 Ball J (1977b) Constitutive inequalities and existence theorems in nonlinear elastostatics. In: Knops RJ (ed) Symposium on non-well posed problems and logarithmic convexity. Springer-lecture notes in mathematics, vol 316
4.
Zurück zum Zitat Balzani D, Neff P, Schröder J, Holzapfel G (2006) A polyconvex framework for soft biological tissues. Adjustment to experimental data. Int J Solids Struct 43(20):6052–6070MathSciNetCrossRefMATH Balzani D, Neff P, Schröder J, Holzapfel G (2006) A polyconvex framework for soft biological tissues. Adjustment to experimental data. Int J Solids Struct 43(20):6052–6070MathSciNetCrossRefMATH
5.
Zurück zum Zitat Balzani D, Gruttmann F, Schröder J (2008) Analysis of thin shells using anisotropic polyconvex energy densities. Comput Methods Appl Mech Eng 197:1015–1032MathSciNetCrossRefMATH Balzani D, Gruttmann F, Schröder J (2008) Analysis of thin shells using anisotropic polyconvex energy densities. Comput Methods Appl Mech Eng 197:1015–1032MathSciNetCrossRefMATH
6.
Zurück zum Zitat Balzani D, Schröder J, Neff P (2010) Applications of anisotropic polyconvex energies: thin shells and biomechanics of arterial walls. In: Poly-, quasi- and rank-one convexity in applied mechanics. CISM course and lectures, vol 516. Springer, New York Balzani D, Schröder J, Neff P (2010) Applications of anisotropic polyconvex energies: thin shells and biomechanics of arterial walls. In: Poly-, quasi- and rank-one convexity in applied mechanics. CISM course and lectures, vol 516. Springer, New York
7.
Zurück zum Zitat Başar Y, Diing Y (1997) Shear deformation models for large-strain shell analysis. Int J Solids Struct 34:1687–1708CrossRefMATH Başar Y, Diing Y (1997) Shear deformation models for large-strain shell analysis. Int J Solids Struct 34:1687–1708CrossRefMATH
8.
Zurück zum Zitat Başar Y, Grytz Y (2004) Incompressibility at large strains and finite-element implementation. Acta Mech 168:75–101CrossRefMATH Başar Y, Grytz Y (2004) Incompressibility at large strains and finite-element implementation. Acta Mech 168:75–101CrossRefMATH
9.
Zurück zum Zitat Betsch P, Gruttmann F, Stein E (1996) A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains. Comput Methods Appl Mech Eng 130:57–79MathSciNetCrossRefMATH Betsch P, Gruttmann F, Stein E (1996) A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains. Comput Methods Appl Mech Eng 130:57–79MathSciNetCrossRefMATH
10.
Zurück zum Zitat Bischoff M, Ramm E (1997) Shear deformable shell elements for large strains and rotations. Int J Numer Methods Eng 40(23):4427–4449CrossRefMATH Bischoff M, Ramm E (1997) Shear deformable shell elements for large strains and rotations. Int J Numer Methods Eng 40(23):4427–4449CrossRefMATH
11.
Zurück zum Zitat Boehler JP (1978) Lois de comportement anisotrope des milieux continus. J Méc 17(2):153–190MathSciNetMATH Boehler JP (1978) Lois de comportement anisotrope des milieux continus. J Méc 17(2):153–190MathSciNetMATH
12.
Zurück zum Zitat Boehler J (1979) A simple derivation of representations for non-polynomial constitutive equations in some cases of anisotropy. Z angew Math Mech 59:157–167MathSciNetCrossRefMATH Boehler J (1979) A simple derivation of representations for non-polynomial constitutive equations in some cases of anisotropy. Z angew Math Mech 59:157–167MathSciNetCrossRefMATH
13.
Zurück zum Zitat Boehler JP (1987) Introduction to the invariant formulation of anisotropic constitutive equations. In: Boehler JP (ed) Applications of tensor functions in solid mechanics, vol 292. International Centre for Mechanical Sciences, Springer, Vienna, p 13–30. ISBN 978-3-211-81975-3 Boehler JP (1987) Introduction to the invariant formulation of anisotropic constitutive equations. In: Boehler JP (ed) Applications of tensor functions in solid mechanics, vol 292. International Centre for Mechanical Sciences, Springer, Vienna, p 13–30. ISBN 978-3-211-81975-3
15.
Zurück zum Zitat Campello EMB, Pimenta PM, Wriggers P (2003) A triangular finite shell element based on a fully nonlinear shell formulation. Comput Mech 31:505–518CrossRefMATH Campello EMB, Pimenta PM, Wriggers P (2003) A triangular finite shell element based on a fully nonlinear shell formulation. Comput Mech 31:505–518CrossRefMATH
16.
Zurück zum Zitat Campello EMB, Pimenta PM, Wriggers P (2011) An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Comput Mech 48:195–211MathSciNetCrossRefMATH Campello EMB, Pimenta PM, Wriggers P (2011) An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Comput Mech 48:195–211MathSciNetCrossRefMATH
17.
Zurück zum Zitat Ciarlet PG (1988) Mathematical elasticity: three-dimensional elasticity, vol I. Elsevier, AmsterdamMATH Ciarlet PG (1988) Mathematical elasticity: three-dimensional elasticity, vol I. Elsevier, AmsterdamMATH
18.
Zurück zum Zitat Ciarlet PG (1993) Mathematical elasticity: three-dimensional elasticity, vol 1. Elsevier, AmsterdamMATH Ciarlet PG (1993) Mathematical elasticity: three-dimensional elasticity, vol 1. Elsevier, AmsterdamMATH
19.
Zurück zum Zitat Cirak F, Long Q (2011) Subdivision shells with exact boundary control and non-manifold geometry. Int J Numer Methods Eng 88(9):897–923MathSciNetCrossRefMATH Cirak F, Long Q (2011) Subdivision shells with exact boundary control and non-manifold geometry. Int J Numer Methods Eng 88(9):897–923MathSciNetCrossRefMATH
20.
Zurück zum Zitat Cirak F, Ortiz M (2001) Fully C1-conforming subdivision elements for finite deformation thin-shell analysis. Int J Numer Methods Eng 51(7):813–833CrossRefMATH Cirak F, Ortiz M (2001) Fully C1-conforming subdivision elements for finite deformation thin-shell analysis. Int J Numer Methods Eng 51(7):813–833CrossRefMATH
21.
Zurück zum Zitat Dacorogna B (1989) Direct methods in the calculus of variations. Applied mathematical sciences, vol 78, 1st edn. Springer, Berlin, Dacorogna B (1989) Direct methods in the calculus of variations. Applied mathematical sciences, vol 78, 1st edn. Springer, Berlin,
22.
23.
Zurück zum Zitat Ebbing V, Balzani D, Schröder J, Neff P, Gruttmann F (2009) Construction of anisotropic polyconvex energies and applications to thin shells. Comput Mater Sci 46(3):639–641CrossRef Ebbing V, Balzani D, Schröder J, Neff P, Gruttmann F (2009) Construction of anisotropic polyconvex energies and applications to thin shells. Comput Mater Sci 46(3):639–641CrossRef
24.
Zurück zum Zitat Hughes TJR, Tezduyar TE (1981) Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element. J Appl Mech 48(3):587–596 Hughes TJR, Tezduyar TE (1981) Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element. J Appl Mech 48(3):587–596
25.
Zurück zum Zitat Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetCrossRefMATH Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetCrossRefMATH
26.
Zurück zum Zitat Ivannikov V, Tiago C, Pimenta PM (2014) Meshless implementation of the geometrically exact Kirchhoff–Love shell theory. Int J Numer Methods Eng 100:1–39MathSciNetCrossRefMATH Ivannikov V, Tiago C, Pimenta PM (2014) Meshless implementation of the geometrically exact Kirchhoff–Love shell theory. Int J Numer Methods Eng 100:1–39MathSciNetCrossRefMATH
27.
Zurück zum Zitat Ivannikov V, Tiago C, Pimenta PM (2015) Generalization of the C1 TUBA plate finite elements to the geometrically exact Kirchhoff–Love shell model. Comput Methods Appl Mech Eng Ivannikov V, Tiago C, Pimenta PM (2015) Generalization of the C1 TUBA plate finite elements to the geometrically exact Kirchhoff–Love shell model. Comput Methods Appl Mech Eng
28.
Zurück zum Zitat Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198(49–52):3902–3914MathSciNetCrossRefMATH Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198(49–52):3902–3914MathSciNetCrossRefMATH
29.
Zurück zum Zitat Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199(37–40):2403–2416MathSciNetCrossRefMATH Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199(37–40):2403–2416MathSciNetCrossRefMATH
30.
Zurück zum Zitat Korelc J (1997) Automatic generation of finite-element code by simultaneous optimization of expressions. Theor Comput Sci 187(1):231–248CrossRefMATH Korelc J (1997) Automatic generation of finite-element code by simultaneous optimization of expressions. Theor Comput Sci 187(1):231–248CrossRefMATH
31.
Zurück zum Zitat Korelc J (2002) Multi-language and multi-environment generation of nonlinear finite element codes. Eng Comput 18:312–327CrossRef Korelc J (2002) Multi-language and multi-environment generation of nonlinear finite element codes. Eng Comput 18:312–327CrossRef
33.
Zurück zum Zitat Malkus D, Hughes TJR (1978) Mixed finite element methods—reduced and selective integration techniques: a unification of concepts. Comput Methods Appl Mech Eng 15(1):63–81CrossRefMATH Malkus D, Hughes TJR (1978) Mixed finite element methods—reduced and selective integration techniques: a unification of concepts. Comput Methods Appl Mech Eng 15(1):63–81CrossRefMATH
34.
Zurück zum Zitat Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Dover Publications, Inc., New YorkMATH Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Dover Publications, Inc., New YorkMATH
35.
Zurück zum Zitat Millan D, Rosolen A, Arroyo M (2010a) Nonlinear manifold learning for meshfree finite deformation thin-shell analysis. Int J Numer Methods Eng 93(7):685–713 Millan D, Rosolen A, Arroyo M (2010a) Nonlinear manifold learning for meshfree finite deformation thin-shell analysis. Int J Numer Methods Eng 93(7):685–713
36.
Zurück zum Zitat Millan D, Rosolen A, Arroyo M (2010b) Thin shell analysis from scattered points with maximum-entropy approximants. Int J Numer Methods Eng 85(6):723–751 Millan D, Rosolen A, Arroyo M (2010b) Thin shell analysis from scattered points with maximum-entropy approximants. Int J Numer Methods Eng 85(6):723–751
37.
Zurück zum Zitat Ojeda R, Prusty BG, Lawrence N, Thomas G (2007) A new approach for the large deflection finite element analysis of isotropic and composite plates with arbitrary orientated stiffeners. Finite Elem Anal Des 43:989–1002CrossRef Ojeda R, Prusty BG, Lawrence N, Thomas G (2007) A new approach for the large deflection finite element analysis of isotropic and composite plates with arbitrary orientated stiffeners. Finite Elem Anal Des 43:989–1002CrossRef
38.
Zurück zum Zitat Oliveira IP, Campello EMB, Pimenta PM (2006) Finite element analysis of the wrinkling of orthotropic membranes. In: III European conference on computational mechanics: solids, structures and coupled problems in engineering: book of abstracts. Springer, Dordrecht, p 661–673 Oliveira IP, Campello EMB, Pimenta PM (2006) Finite element analysis of the wrinkling of orthotropic membranes. In: III European conference on computational mechanics: solids, structures and coupled problems in engineering: book of abstracts. Springer, Dordrecht, p 661–673
39.
Zurück zum Zitat Ota N, Wilson L, Gay A, Neto S, Pellegrino S, Pimenta PM (2016) Nonlinear dynamic analysis of creased shells. Finite Elem Anal Des 121:64–74MathSciNetCrossRef Ota N, Wilson L, Gay A, Neto S, Pellegrino S, Pimenta PM (2016) Nonlinear dynamic analysis of creased shells. Finite Elem Anal Des 121:64–74MathSciNetCrossRef
40.
Zurück zum Zitat Pimenta PM (1993) On the geometrically-exact finite-strain shell model. In: Proceeding of the third Pan-American congress on applied mechanics, PACAM III, January 1993. Escola Politecnica da Universidade de Sao Paulo, Sao Paulo, p 616–619 Pimenta PM (1993) On the geometrically-exact finite-strain shell model. In: Proceeding of the third Pan-American congress on applied mechanics, PACAM III, January 1993. Escola Politecnica da Universidade de Sao Paulo, Sao Paulo, p 616–619
41.
Zurück zum Zitat Pimenta PM, Campello EMB (2009) Shell curvatures as an initial deformation: a geometrically exact finite element approach. Int J Numer Methods Eng 78:1094–1112MathSciNetCrossRefMATH Pimenta PM, Campello EMB (2009) Shell curvatures as an initial deformation: a geometrically exact finite element approach. Int J Numer Methods Eng 78:1094–1112MathSciNetCrossRefMATH
42.
Zurück zum Zitat Pimenta PM, Almeida Neto ES, Campello EMB (2010) A fully nonlinear thin shell model of Kirchhoff–Love type. In: New trends in thin structures: formulation, optimization and coupled problems. Springer Vienna, Vienna, p 29–58 Pimenta PM, Almeida Neto ES, Campello EMB (2010) A fully nonlinear thin shell model of Kirchhoff–Love type. In: New trends in thin structures: formulation, optimization and coupled problems. Springer Vienna, Vienna, p 29–58
43.
Zurück zum Zitat Rabczuk T, Areias PMA, Belytschko T (2007) A meshfree thin shell method for non-linear dynamic fracture. Int J Numer Methods Eng 72:524–548MathSciNetCrossRefMATH Rabczuk T, Areias PMA, Belytschko T (2007) A meshfree thin shell method for non-linear dynamic fracture. Int J Numer Methods Eng 72:524–548MathSciNetCrossRefMATH
44.
Zurück zum Zitat Samanta A, Mukhopadhyay M (1999) Finite element large deflection static analysis of shallow and deep stiffened shells. Finite Elem Anal Des Samanta A, Mukhopadhyay M (1999) Finite element large deflection static analysis of shallow and deep stiffened shells. Finite Elem Anal Des
45.
Zurück zum Zitat Sansour C, Kollmann F (2000) Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assessment of hybrid stress, hybrid strain and enhanced strain elements. Comput Mech 24:435–447CrossRefMATH Sansour C, Kollmann F (2000) Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assessment of hybrid stress, hybrid strain and enhanced strain elements. Comput Mech 24:435–447CrossRefMATH
46.
Zurück zum Zitat Schröder J (2010) Anisotropic polyconvex energies. In: Poly-, quasi- and rank-one convexity in applied mechanics. Springer, Vienna, p 53–105 Schröder J (2010) Anisotropic polyconvex energies. In: Poly-, quasi- and rank-one convexity in applied mechanics. Springer, Vienna, p 53–105
47.
Zurück zum Zitat Schröder J, Neff P (2001) On the construction of polyconvex anisotropic free energy functions. In: Miehe C (ed) Proceedings of the IUTAM Symposium on computational mechanics of solid materials at large strains. Kluwer Academic Publishers, Dordrecht, p 171–180 Schröder J, Neff P (2001) On the construction of polyconvex anisotropic free energy functions. In: Miehe C (ed) Proceedings of the IUTAM Symposium on computational mechanics of solid materials at large strains. Kluwer Academic Publishers, Dordrecht, p 171–180
48.
Zurück zum Zitat Schröder J, Neff P (2003) Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int J Solids Struct 40:401–445MathSciNetCrossRefMATH Schröder J, Neff P (2003) Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int J Solids Struct 40:401–445MathSciNetCrossRefMATH
49.
Zurück zum Zitat Schröder J, Neff P (eds, 2010) Poly-, quasi- and rank-one convexity in applied mechanics, CISM book, vol 516. Springer, Wien Schröder J, Neff P (eds, 2010) Poly-, quasi- and rank-one convexity in applied mechanics, CISM book, vol 516. Springer, Wien
50.
Zurück zum Zitat Schröder J, Neff P, Ebbing V (2008) Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors. J Mech Phys Solids 56(12):3486–3506MathSciNetCrossRefMATH Schröder J, Neff P, Ebbing V (2008) Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors. J Mech Phys Solids 56(12):3486–3506MathSciNetCrossRefMATH
51.
Zurück zum Zitat Schröder J, Balzani D, Stranghöner N, Uhlemann J, Gruttmann F, Saxe K (2011) Membranstrukturen mit nicht-linearem anisotropem materialverhalten - aspekte der materialprüfung und der numerischen simulation 86:381–389 Schröder J, Balzani D, Stranghöner N, Uhlemann J, Gruttmann F, Saxe K (2011) Membranstrukturen mit nicht-linearem anisotropem materialverhalten - aspekte der materialprüfung und der numerischen simulation 86:381–389
52.
Zurück zum Zitat Silhavy M (1997) The mechanics and thermodynamics of continuous media. Springer, BerlinCrossRefMATH Silhavy M (1997) The mechanics and thermodynamics of continuous media. Springer, BerlinCrossRefMATH
53.
Zurück zum Zitat Simo JC, Fox DD (1989) On a stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization. Comput Methods Appl Mech Eng 72:267–304 Simo JC, Fox DD (1989) On a stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization. Comput Methods Appl Mech Eng 72:267–304
54.
Zurück zum Zitat Simo JC, Rifai MS (1990) A class of assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638MathSciNetCrossRefMATH Simo JC, Rifai MS (1990) A class of assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638MathSciNetCrossRefMATH
55.
Zurück zum Zitat Simo JC, Fox DD, Rifai MS (1989) On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects. Comput Methods Appl Mech Eng 73:53–92 Simo JC, Fox DD, Rifai MS (1989) On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects. Comput Methods Appl Mech Eng 73:53–92
56.
Zurück zum Zitat Simo JC, Fox DD, Rifai MS (1990) On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory. Comput Methods Appl Mech Eng 79:21–70 Simo JC, Fox DD, Rifai MS (1990) On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory. Comput Methods Appl Mech Eng 79:21–70
57.
Zurück zum Zitat Truesdell C, Noll W (2004) The non-linear field theories of mechanics, 3rd edn. Springer, BerlinCrossRefMATH Truesdell C, Noll W (2004) The non-linear field theories of mechanics, 3rd edn. Springer, BerlinCrossRefMATH
Metadaten
Titel
A simple triangular finite element for nonlinear thin shells: statics, dynamics and anisotropy
verfasst von
Nils Viebahn
Paulo M. Pimenta
Jörg Schröder
Publikationsdatum
08.11.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 2/2017
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-016-1343-6

Weitere Artikel der Ausgabe 2/2017

Computational Mechanics 2/2017 Zur Ausgabe

Neuer Inhalt