Skip to main content
Erschienen in: Metal Science and Heat Treatment 9-10/2016

23.01.2016 | SHAPE MEMORY ALLOYS

A Study of Free Recovery in a Fe – Mn – Si – Cr Shape Memory Alloy

verfasst von: I.-P. Spiridon, N.-M. Lohan, M.-G. Suru, E. Mihalache, L.-G. Bujoreanu, B. Pricop

Erschienen in: Metal Science and Heat Treatment | Ausgabe 9-10/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Video recording of the free recovery of “hot shape” (typical for the austenitic domain) in shape-memory alloy Fe – 28% Mn – 6% Si – 5% Cr during heating of specimens with a “cold shape” typical for the martensitic domain is performed. Prior to each measurement the specimens are deformed by caliber bending at room temperature in martensitic condition. The thermomechanical training consists in 10 cycles of bending – heating – cooling. Displacements of the free ends of the specimens are plotted as a function of the temperature and the plots are used to determine the critical temperatures of the reverse martensitic transformation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Here and below in the paper the content of elements is given in weight percent.
 
Literatur
1.
Zurück zum Zitat A. Sato, E. Chishima, K. Soma, and T. Mori, “Shape memory effect in γ ↔ ε transformation in Fe – 30Mn – 1Si alloy single crystals,” Acta Metall., 30(6), 1177 – 1183 (1982).CrossRef A. Sato, E. Chishima, K. Soma, and T. Mori, “Shape memory effect in γ ↔ ε transformation in Fe – 30Mn – 1Si alloy single crystals,” Acta Metall., 30(6), 1177 – 1183 (1982).CrossRef
2.
Zurück zum Zitat R. D. James and K. F. Hane, “Martensitic transformations and shape-memory materials,” Acta Mater., 48, 197 – 222 (2000).CrossRef R. D. James and K. F. Hane, “Martensitic transformations and shape-memory materials,” Acta Mater., 48, 197 – 222 (2000).CrossRef
3.
Zurück zum Zitat R. A. Shakoor and F. Ahmad Kalif, “Thermomechanical behavior of Fe – Mn – Si – Cr – Ni shape memory alloys modified with samarium,” Mater. Sci. Eng. A, 499, 411 – 414 (2009).CrossRef R. A. Shakoor and F. Ahmad Kalif, “Thermomechanical behavior of Fe – Mn – Si – Cr – Ni shape memory alloys modified with samarium,” Mater. Sci. Eng. A, 499, 411 – 414 (2009).CrossRef
4.
Zurück zum Zitat J. L. Proft and T. W. Duerig, “The mechanical aspects of constraint recovery,” in: T. W. Duerig, K. N. Melton, D. Stockel, and C. M. Wayman (eds.), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London (1990), 115 p. J. L. Proft and T. W. Duerig, “The mechanical aspects of constraint recovery,” in: T. W. Duerig, K. N. Melton, D. Stockel, and C. M. Wayman (eds.), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London (1990), 115 p.
5.
Zurück zum Zitat L. G. Bujoreanu, V. Dia, S. Stanciu, M. Susan, and C. Baciu, “Study of the tensile constrained recovery behavior of a Fe – Mn – Si shape memory alloy,” Eur. Phys. J. Spec. Topics, 158, 15 – 20 (2008).CrossRef L. G. Bujoreanu, V. Dia, S. Stanciu, M. Susan, and C. Baciu, “Study of the tensile constrained recovery behavior of a Fe – Mn – Si shape memory alloy,” Eur. Phys. J. Spec. Topics, 158, 15 – 20 (2008).CrossRef
6.
Zurück zum Zitat S. Kajiwara, A. L. Baruj, T. Kikuchi and N. Shinya, “Low-cost high-quality Fe-based shape memory alloys suitable for pipe joints,” Proc. SPIE, 5053, 251 – 261 (2003). S. Kajiwara, A. L. Baruj, T. Kikuchi and N. Shinya, “Low-cost high-quality Fe-based shape memory alloys suitable for pipe joints,” Proc. SPIE, 5053, 251 – 261 (2003).
7.
Zurück zum Zitat T. Maruyama, T. Kurita, S. Kozaki, K. Andou, S. Farjami, and H. Kubo, “Innovation in producing crane rail fishplate using Fe – Mn – Si – Cr based shape memory alloy,” Mater. Sci. Technol., 24, 908 – 912 (2008).CrossRef T. Maruyama, T. Kurita, S. Kozaki, K. Andou, S. Farjami, and H. Kubo, “Innovation in producing crane rail fishplate using Fe – Mn – Si – Cr based shape memory alloy,” Mater. Sci. Technol., 24, 908 – 912 (2008).CrossRef
8.
Zurück zum Zitat T. Sawaguchi, T. Kikuchi, K. Ogawa, S. Kajiwara, Y. Ikeo, M. Kojima, and T. Ogawa, “Development of prestressed concrete using Fe – Mn – Si-based shape memory alloys containing NbC,” Mater. Trans., 47(3), 580 – 583 (2006).CrossRef T. Sawaguchi, T. Kikuchi, K. Ogawa, S. Kajiwara, Y. Ikeo, M. Kojima, and T. Ogawa, “Development of prestressed concrete using Fe – Mn – Si-based shape memory alloys containing NbC,” Mater. Trans., 47(3), 580 – 583 (2006).CrossRef
9.
Zurück zum Zitat T. Sawaguchi, K. Ogawa, and T. Kikuchi, “Absorption of seismic vibration by Fe – Mn – Si-based shape memory alloys and TRIP/TWIP steels,” in: S. Miyazaki (ed.), Proc. Int. Conf. Shape Memory and Superelastic Technology SMST-2007, Dec. 3 – 5, Tsukuba City, Japan (2007), pp. 637 – 644. T. Sawaguchi, K. Ogawa, and T. Kikuchi, “Absorption of seismic vibration by Fe – Mn – Si-based shape memory alloys and TRIP/TWIP steels,” in: S. Miyazaki (ed.), Proc. Int. Conf. Shape Memory and Superelastic Technology SMST-2007, Dec. 3 – 5, Tsukuba City, Japan (2007), pp. 637 – 644.
10.
Zurück zum Zitat L. Janke, C. Czaderski, M. Motavalli, and J. Ruth, “Application of shape memory alloys in civil engineering structures—overview, limits and new ideas,” Mater. Struct., 38, 578 – 592 (2005). L. Janke, C. Czaderski, M. Motavalli, and J. Ruth, “Application of shape memory alloys in civil engineering structures—overview, limits and new ideas,” Mater. Struct., 38, 578 – 592 (2005).
11.
Zurück zum Zitat N. Stanford and D. P. Dunne, “Thermo-mechanical processing and shape memory effect in an Fe-based shape memory alloy” Mater. Sci. Eng. A, 422(1 – 2), 352 – 359 (2006).CrossRef N. Stanford and D. P. Dunne, “Thermo-mechanical processing and shape memory effect in an Fe-based shape memory alloy” Mater. Sci. Eng. A, 422(1 – 2), 352 – 359 (2006).CrossRef
12.
Zurück zum Zitat A. Baruj and H. E. Triiani, “The effect of pre-rolling Fe – Mn – Si-based shape memory alloys: mechanical properties and transmission electron microscopy examination,” Mater. Sci. Eng. A-Struct., 481 – 482, 574 – 577 (2008). A. Baruj and H. E. Triiani, “The effect of pre-rolling Fe – Mn – Si-based shape memory alloys: mechanical properties and transmission electron microscopy examination,” Mater. Sci. Eng. A-Struct., 481 – 482, 574 – 577 (2008).
13.
Zurück zum Zitat A. Druker, A. Baruj, and J. Malarria, “Effect of rolling conditions on the structure and shape memory properties of Fe – Mn – Si alloys,” Mater. Charact., 61(6), 603 – 612 (2010).CrossRef A. Druker, A. Baruj, and J. Malarria, “Effect of rolling conditions on the structure and shape memory properties of Fe – Mn – Si alloys,” Mater. Charact., 61(6), 603 – 612 (2010).CrossRef
14.
Zurück zum Zitat M. Koyama, T. Sawaguchi, K. Ogawa, T. Kikuchi, and M. Murakami, “The effect of thermomechanical treatment on the deformation characteristics of Fe – Mn – Si – Al alloys,” Mater. Sci. Eng. A-Struct., 497(1 – 2), 353 – 357 (2008).CrossRef M. Koyama, T. Sawaguchi, K. Ogawa, T. Kikuchi, and M. Murakami, “The effect of thermomechanical treatment on the deformation characteristics of Fe – Mn – Si – Al alloys,” Mater. Sci. Eng. A-Struct., 497(1 – 2), 353 – 357 (2008).CrossRef
15.
Zurück zum Zitat C. H. Yang, H. C. Lin, K. M. Lin, and H. K. Tsai, “Effects of thermo-mechanical treatment on a Fe – 30 Mn – 6Si shape memory alloy,” Mater. Sci. Eng. A-Struct., 497(1 – 2), 445 – 450 (2008).CrossRef C. H. Yang, H. C. Lin, K. M. Lin, and H. K. Tsai, “Effects of thermo-mechanical treatment on a Fe – 30 Mn – 6Si shape memory alloy,” Mater. Sci. Eng. A-Struct., 497(1 – 2), 445 – 450 (2008).CrossRef
16.
Zurück zum Zitat H. Otsuka, H. Yamada, T. Maruyama, G. Tanahashi, M. Matsuda, and M. Murakami, “Effects of alloying additions on Fe – Mn – Si shape memory alloys,” ISIJ Int., 30, 674 – 679 (1990).CrossRef H. Otsuka, H. Yamada, T. Maruyama, G. Tanahashi, M. Matsuda, and M. Murakami, “Effects of alloying additions on Fe – Mn – Si shape memory alloys,” ISIJ Int., 30, 674 – 679 (1990).CrossRef
17.
Zurück zum Zitat M. Murakami, H. Otsuka, and S. Matsuda, “Improvement of shape memory effect of Fe – Mn – Si alloys,” Trans. ISIJ, 27, B-89 (1987). M. Murakami, H. Otsuka, and S. Matsuda, “Improvement of shape memory effect of Fe – Mn – Si alloys,” Trans. ISIJ, 27, B-89 (1987).
18.
Zurück zum Zitat T. Kirindi, U. Sari, and M. Dikici, “The effects of pre-strain, recovery, temperature, and bending deformation on shape memory effect in an Fe – Mn – Si – Cr – Ni alloy,” J. Alloys Comp., 475, 145 – 150 (2009).CrossRef T. Kirindi, U. Sari, and M. Dikici, “The effects of pre-strain, recovery, temperature, and bending deformation on shape memory effect in an Fe – Mn – Si – Cr – Ni alloy,” J. Alloys Comp., 475, 145 – 150 (2009).CrossRef
19.
Zurück zum Zitat B. Pricop, U. Söyler, B. Ozkal, N. M. Lohan, A. L. Parachiv, M. G. Suru, and L.-G. Bujoreanu, “Influence of mechanical alloying on the behavior of Fe – Mn – Si – Cr – Ni shape memory alloys made by powder metallurgy,” Mater. Sci. Forum, 738 – 739, 237 – 241 (2013). B. Pricop, U. Söyler, B. Ozkal, N. M. Lohan, A. L. Parachiv, M. G. Suru, and L.-G. Bujoreanu, “Influence of mechanical alloying on the behavior of Fe – Mn – Si – Cr – Ni shape memory alloys made by powder metallurgy,” Mater. Sci. Forum, 738 – 739, 237 – 241 (2013).
20.
Zurück zum Zitat N. M. Lohan, B. Pricop, L.-G. Bujoreanu, and N. Cimpoesu, “Heating rate effects on reverse martensitic transformation in a Cu – Zn – Al shape memory alloy,” Int. J. Mater. Res., 102, 1345 – 1351 (2011).CrossRef N. M. Lohan, B. Pricop, L.-G. Bujoreanu, and N. Cimpoesu, “Heating rate effects on reverse martensitic transformation in a Cu – Zn – Al shape memory alloy,” Int. J. Mater. Res., 102, 1345 – 1351 (2011).CrossRef
21.
Zurück zum Zitat A. Baruj and H. E. Troiani, “The effect of pre-rolling on Fe – Mn – Si-based shape memory alloys: mechanical properties and transmission electron microscopy examination,” Mater. Sci. Eng. A, 481 – 482, 574 – 577 (2008). A. Baruj and H. E. Troiani, “The effect of pre-rolling on Fe – Mn – Si-based shape memory alloys: mechanical properties and transmission electron microscopy examination,” Mater. Sci. Eng. A, 481 – 482, 574 – 577 (2008).
Metadaten
Titel
A Study of Free Recovery in a Fe – Mn – Si – Cr Shape Memory Alloy
verfasst von
I.-P. Spiridon
N.-M. Lohan
M.-G. Suru
E. Mihalache
L.-G. Bujoreanu
B. Pricop
Publikationsdatum
23.01.2016
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment / Ausgabe 9-10/2016
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-016-9920-z

Weitere Artikel der Ausgabe 9-10/2016

Metal Science and Heat Treatment 9-10/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.