Skip to main content
Erschienen in: Electrical Engineering 2/2022

06.07.2021 | Original Paper

A survey on a novel double-rotor spoke-type permanent magnet induction generator employing bridged and bridgeless structures

verfasst von: Mohammad Mahdi Derakhshani, Mohammad Ardebili, Reza Jafari

Erschienen in: Electrical Engineering | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Double-turbine systems offer a higher capability of wind energy conversion compared to single-turbine systems. Therefore, in order to improve the performance of double-turbine systems and eliminate mechanical gearbox systems by utilizing the direct-drive concept, a new direct-drive generator design is required. In this paper, the structure of a novel spoke-type permanent magnet induction generator (STPMIG) exploited in double-turbine wind systems is investigated, and the performance and relationships of the proposed generator with and without iron bridges are studied. The proposed generator consists of a stator, and two concentric permanent magnet and squirrel-cage rotors, in which the voltage induction in the stator windings is possible only by the permanent magnet outer rotor. Although utilizing the permanent magnet rotor with iron bridges enhances the mechanical strength, the leakage flux increases, which leads to the reduction in the generator output power. In order to decrease the leakage flux and improve the output power of the proposed generator, the bridgeless outer rotor structure is preferred over the rotor with iron bridges. The bridgeless structure offers lower leakage flux, higher efficiency, and lower voltage regulation in comparison with the bridged structure. Furthermore, the novel structure of double-rotor STPMIG allows rotors to rotate independently at different speeds without employing additional rings and brushes, regarded as considerable merit for double-turbine wind systems. Finally, a 250-W bridgeless double-rotor STPMIG exploited in double-turbine systems is constructed and tested to verify the finite element analysis (2D-FEA) results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sayed K, Abdel-Salam M (2017) Dynamic performance of wind turbine conversion system using PMSG-based wind simulator. Electr Eng 99(1):431–439CrossRef Sayed K, Abdel-Salam M (2017) Dynamic performance of wind turbine conversion system using PMSG-based wind simulator. Electr Eng 99(1):431–439CrossRef
2.
Zurück zum Zitat Kumar Y et al (2016) Wind energy: trends and enabling technologies. Renew Sustain Energy Rev 53:209–224CrossRef Kumar Y et al (2016) Wind energy: trends and enabling technologies. Renew Sustain Energy Rev 53:209–224CrossRef
3.
Zurück zum Zitat Jian L, Chau K (2010) A coaxial magnetic gear with halbach permanent-magnet arrays. IEEE Trans Energy Convers 25(2):319–328CrossRef Jian L, Chau K (2010) A coaxial magnetic gear with halbach permanent-magnet arrays. IEEE Trans Energy Convers 25(2):319–328CrossRef
4.
Zurück zum Zitat Choi D-W et al (2014) Light weight design of direct-drive generator for large-scale wind turbine. Int J Precis Eng Manuf 15(6):1223–1228CrossRef Choi D-W et al (2014) Light weight design of direct-drive generator for large-scale wind turbine. Int J Precis Eng Manuf 15(6):1223–1228CrossRef
5.
Zurück zum Zitat Ribrant J, Bertling L (2007) Survey of failures in wind power systems with focus on Swedish wind power plants during 1997–2005. In: 2007 IEEE power engineering society general meeting. IEEE Ribrant J, Bertling L (2007) Survey of failures in wind power systems with focus on Swedish wind power plants during 1997–2005. In: 2007 IEEE power engineering society general meeting. IEEE
6.
Zurück zum Zitat Hocine L, Nora Z, Samira KM (2015) Wind turbine gearbox fault diagnosis based on symmetrical components and frequency domain. Electr Eng 97(4):327–336CrossRef Hocine L, Nora Z, Samira KM (2015) Wind turbine gearbox fault diagnosis based on symmetrical components and frequency domain. Electr Eng 97(4):327–336CrossRef
7.
Zurück zum Zitat Gul W, Gao Q, Lenwari W (2019) Optimal design of a 5-MW double-stator single-rotor PMSG for offshore direct drive wind turbines. IEEE Trans Ind Appl 56(1):216–225CrossRef Gul W, Gao Q, Lenwari W (2019) Optimal design of a 5-MW double-stator single-rotor PMSG for offshore direct drive wind turbines. IEEE Trans Ind Appl 56(1):216–225CrossRef
8.
Zurück zum Zitat Wang Q, Niu S, Yang L (2017) Design optimization of a novel scale-down hybrid-excited dual permanent magnet generator for direct-drive wind power application. IEEE Trans Magn 54(3):1–4 Wang Q, Niu S, Yang L (2017) Design optimization of a novel scale-down hybrid-excited dual permanent magnet generator for direct-drive wind power application. IEEE Trans Magn 54(3):1–4
9.
Zurück zum Zitat Bhuiyan NA, McDonald A (2018) Optimization of offshore direct drive wind turbine generators with consideration of permanent magnet grade and temperature. IEEE Trans Energy Convers 34(2):1105–1114CrossRef Bhuiyan NA, McDonald A (2018) Optimization of offshore direct drive wind turbine generators with consideration of permanent magnet grade and temperature. IEEE Trans Energy Convers 34(2):1105–1114CrossRef
10.
Zurück zum Zitat Qiu H et al (2019) Study on permanent magnet thickness of high-speed permanent magnet generator. Electr Eng 101(2):499–506CrossRef Qiu H et al (2019) Study on permanent magnet thickness of high-speed permanent magnet generator. Electr Eng 101(2):499–506CrossRef
11.
Zurück zum Zitat Zhou Y, Xue Z (2020) Analytical method for calculating the magnetic field of spoke-type permanent magnet machines accounting for eccentric magnetic pole. IEEE Trans Ind Electron 68(3):2096–2107CrossRef Zhou Y, Xue Z (2020) Analytical method for calculating the magnetic field of spoke-type permanent magnet machines accounting for eccentric magnetic pole. IEEE Trans Ind Electron 68(3):2096–2107CrossRef
12.
Zurück zum Zitat Jun C-S, Kwon B-I (2017) Performance comparison of a spoke-type PM motor with different permanent magnet shapes and the same magnet volume. IET Electr Power Appl 11(7):1196–1204CrossRef Jun C-S, Kwon B-I (2017) Performance comparison of a spoke-type PM motor with different permanent magnet shapes and the same magnet volume. IET Electr Power Appl 11(7):1196–1204CrossRef
13.
Zurück zum Zitat Didane DH et al (2018) Performance evaluation of a novel vertical axis wind turbine with coaxial contra-rotating concept. Renew Energy 115:353–361CrossRef Didane DH et al (2018) Performance evaluation of a novel vertical axis wind turbine with coaxial contra-rotating concept. Renew Energy 115:353–361CrossRef
14.
Zurück zum Zitat Zhao X et al (2020) The aerodynamic coupling design and wind tunnel test of contra-rotating wind turbines. Renew Energy 146:1–8CrossRef Zhao X et al (2020) The aerodynamic coupling design and wind tunnel test of contra-rotating wind turbines. Renew Energy 146:1–8CrossRef
15.
Zurück zum Zitat Didane DH et al (2019) Numerical investigation of a novel contra-rotating vertical axis wind turbine. Sustain Energy Technol Assess 31:43–53 Didane DH et al (2019) Numerical investigation of a novel contra-rotating vertical axis wind turbine. Sustain Energy Technol Assess 31:43–53
16.
Zurück zum Zitat Wang Z et al (2018) An experimental study on the aerodynamic performances and wake characteristics of an innovative dual-rotor wind turbine. Energy 147:94–109CrossRef Wang Z et al (2018) An experimental study on the aerodynamic performances and wake characteristics of an innovative dual-rotor wind turbine. Energy 147:94–109CrossRef
17.
Zurück zum Zitat Vasel-Be-Hagh A, Archer CL (2017) Wind farms with counter-rotating wind turbines. Sustain Energy Technol Assess 24:19–30 Vasel-Be-Hagh A, Archer CL (2017) Wind farms with counter-rotating wind turbines. Sustain Energy Technol Assess 24:19–30
18.
Zurück zum Zitat Zhiqiang L et al (2018) The study on performance and aerodynamics of micro counter-rotating HAWT. Energy 161:939–954CrossRef Zhiqiang L et al (2018) The study on performance and aerodynamics of micro counter-rotating HAWT. Energy 161:939–954CrossRef
19.
Zurück zum Zitat Liu P et al (2019) Acoustic noise measurement in counter-rotating propellers. J Mech Sci Technol 33(7):3187–3192CrossRef Liu P et al (2019) Acoustic noise measurement in counter-rotating propellers. J Mech Sci Technol 33(7):3187–3192CrossRef
20.
Zurück zum Zitat No T et al (2009) Modeling, control, and simulation of dual rotor wind turbine generator system. Renew Energy 34(10):2124–2132CrossRef No T et al (2009) Modeling, control, and simulation of dual rotor wind turbine generator system. Renew Energy 34(10):2124–2132CrossRef
21.
Zurück zum Zitat Janakiraman R, Paramasivam S (2012) Modeling of contra-rotating permanent magnet synchronous machine for a wind power generation. In: 2012 international conference on emerging trends in electrical engineering and energy management (ICETEEEM). IEEE Janakiraman R, Paramasivam S (2012) Modeling of contra-rotating permanent magnet synchronous machine for a wind power generation. In: 2012 international conference on emerging trends in electrical engineering and energy management (ICETEEEM). IEEE
22.
Zurück zum Zitat Luo X, Niu S (2016) A novel contra-rotating power split transmission system for wind power generation and its dual MPPT control strategy. IEEE Trans Power Electron 32(9):6924–6935CrossRef Luo X, Niu S (2016) A novel contra-rotating power split transmission system for wind power generation and its dual MPPT control strategy. IEEE Trans Power Electron 32(9):6924–6935CrossRef
23.
Zurück zum Zitat Booker J et al (2010) A compact, high efficiency contra-rotating generator suitable for wind turbines in the urban environment. Renew Energy 35(9):2027–2033CrossRef Booker J et al (2010) A compact, high efficiency contra-rotating generator suitable for wind turbines in the urban environment. Renew Energy 35(9):2027–2033CrossRef
24.
Zurück zum Zitat Potgieter JH, Kamper MJ (2016) Double PM-rotor, toothed, toroidal-winding wind generator: a comparison with conventional winding direct-drive PM wind generators over a wide power range. IEEE Trans Ind Appl 52(4):2881–2891CrossRef Potgieter JH, Kamper MJ (2016) Double PM-rotor, toothed, toroidal-winding wind generator: a comparison with conventional winding direct-drive PM wind generators over a wide power range. IEEE Trans Ind Appl 52(4):2881–2891CrossRef
25.
Zurück zum Zitat Lee SG, Bae J, Kim W-H (2017) A study on the maximum flux linkage and the goodness factor for the spoke-type PMSM. IEEE Trans Appl Supercond 28(3):1–5 Lee SG, Bae J, Kim W-H (2017) A study on the maximum flux linkage and the goodness factor for the spoke-type PMSM. IEEE Trans Appl Supercond 28(3):1–5
26.
Zurück zum Zitat Zhang H et al (2018) Design considerations of novel modular-spoke-type permanent magnet machines. IEEE Trans Ind Appl 54(5):4236–4245CrossRef Zhang H et al (2018) Design considerations of novel modular-spoke-type permanent magnet machines. IEEE Trans Ind Appl 54(5):4236–4245CrossRef
27.
Zurück zum Zitat Zhu L et al (2009) Analytical methods for minimizing cogging torque in permanent-magnet machines. IEEE Trans Magn 45(4):2023–2031CrossRef Zhu L et al (2009) Analytical methods for minimizing cogging torque in permanent-magnet machines. IEEE Trans Magn 45(4):2023–2031CrossRef
28.
Zurück zum Zitat Islam R et al (2007) Permanent magnet synchronous motor magnet designs with skewing for torque ripple and cogging torque reduction. In: 2007 IEEE industry applications annual meeting. IEEE Islam R et al (2007) Permanent magnet synchronous motor magnet designs with skewing for torque ripple and cogging torque reduction. In: 2007 IEEE industry applications annual meeting. IEEE
29.
Zurück zum Zitat Gotovac G et al (2015) Analytical and FEM approach to reduce the cogging torque in in-wheel motors. Electr Eng 97(4):269–275CrossRef Gotovac G et al (2015) Analytical and FEM approach to reduce the cogging torque in in-wheel motors. Electr Eng 97(4):269–275CrossRef
Metadaten
Titel
A survey on a novel double-rotor spoke-type permanent magnet induction generator employing bridged and bridgeless structures
verfasst von
Mohammad Mahdi Derakhshani
Mohammad Ardebili
Reza Jafari
Publikationsdatum
06.07.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 2/2022
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-021-01352-z

Weitere Artikel der Ausgabe 2/2022

Electrical Engineering 2/2022 Zur Ausgabe

Neuer Inhalt