Skip to main content
Erschienen in: Peer-to-Peer Networking and Applications 5/2019

07.09.2018

A three dimensional tracking scheme for underwater non-cooperative objects in mixed LOS and NLOS environment

Erschienen in: Peer-to-Peer Networking and Applications | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Underwater positioning and tracking scheme for non-cooperative objects is of great essence to explore unknown fields. Due to the high response time and non-line-of-sight(NLOS) propagation in the underwater acoustic sensor networks (UASNs), the existed range-based 3D target tracking algorithms are generally inaccurate on detecting underwater non-cooperative objects. In order to solve the problems above, the corresponding solutions are presented respectively in this paper. Although it is hard to change the inherent property of the underwater acoustic propagation, reducing the communication time is another way to solve the problem indirectly. Since the ranging phase and synchronize phase occupy most of the communication time, the presented novel ranging scheme for non-cooperative objects reduces the redundant time consumption, and further eliminates the necessity of synchronization process in advanced. For NLOS propagation, a distributed residual weighting discrimination (DRWD) algorithm based on grouping strategy is proposed for non-cooperative objects. The position estimations of the groups containing the NLOS link error are always distributed in isolation, and the estimations without the NLOS link errors are always concentrated in a small range. According to this feature, a low computational complexity approach namely two-step least square (LS) is proposed to determine the best location by analyzing the distribution of estimated coordinates. Meanwhile, a parameterized selection strategy is proposed first time to evaluate the construction of reference nodes in 3D target tracking. We provide a mathematical proof for our strategy, which avoids the ambiguity occurrence caused by the distribution of reference nodes. The new scheme provided for underwater acoustic tracking (UWAT) greatly improves the positioning accuracy in mixed LOS/NLOS environment. At the end of the paper, simulations are illustrated to evaluate and validate the algorithmic superiority and effectiveness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Heidemann J, Ye W, Wills J, Syed A, Li Y (2006) Research challenges and applications for underwater sensor networking. In: Wireless Communications and Networking Conference, 2006. WCNC 2006. IEEE, vol. 1, pp. 228–235 IEEE Heidemann J, Ye W, Wills J, Syed A, Li Y (2006) Research challenges and applications for underwater sensor networking. In: Wireless Communications and Networking Conference, 2006. WCNC 2006. IEEE, vol. 1, pp. 228–235 IEEE
2.
Zurück zum Zitat Chandrasekhar V, Seah WK, Choo YS, Ee HV (2006) Localization in underwater sensor networks:survey and challenges. In: IEEE Signal Processing and Communications Applications Conference, pp 33–40 Chandrasekhar V, Seah WK, Choo YS, Ee HV (2006) Localization in underwater sensor networks:survey and challenges. In: IEEE Signal Processing and Communications Applications Conference, pp 33–40
4.
Zurück zum Zitat Erol-Kantarci M, Mouftah HT, Oktug S (2011) A survey of architectures and localization techniques for underwater acoustic sensor networks. IEEE Commun Surv Tutorials 13(3):487–502CrossRef Erol-Kantarci M, Mouftah HT, Oktug S (2011) A survey of architectures and localization techniques for underwater acoustic sensor networks. IEEE Commun Surv Tutorials 13(3):487–502CrossRef
5.
Zurück zum Zitat Liu Z, Wang J, Xia Y, Fan R, Jiang H, Yang H (2016) Power allocation robust to time-varying wireless channels in femtocell networks. IEEE Trans Veh Technol 65(4):2806–2815CrossRef Liu Z, Wang J, Xia Y, Fan R, Jiang H, Yang H (2016) Power allocation robust to time-varying wireless channels in femtocell networks. IEEE Trans Veh Technol 65(4):2806–2815CrossRef
6.
Zurück zum Zitat Rawat P, Singh KD, Chaouchi H, Bonnin JM (2014) Wireless sensor networks: a survey on recent developments and potential synergies. J Supercomput 68(1):1–48CrossRef Rawat P, Singh KD, Chaouchi H, Bonnin JM (2014) Wireless sensor networks: a survey on recent developments and potential synergies. J Supercomput 68(1):1–48CrossRef
7.
Zurück zum Zitat Chitre M, Shahabudeen S, Stojanovic M (2008) Underwater acoustic communications and networking: Recent advances and future challenges. Mar Technol Soc J 42(1):103–116CrossRef Chitre M, Shahabudeen S, Stojanovic M (2008) Underwater acoustic communications and networking: Recent advances and future challenges. Mar Technol Soc J 42(1):103–116CrossRef
8.
Zurück zum Zitat Berger CR, Zhou S, Willett P, Liu L (2008) Stratification effect compensation for improved underwater acoustic ranging. IEEE Trans Signal Process 56(8):3779–3783MathSciNetCrossRefMATH Berger CR, Zhou S, Willett P, Liu L (2008) Stratification effect compensation for improved underwater acoustic ranging. IEEE Trans Signal Process 56(8):3779–3783MathSciNetCrossRefMATH
9.
Zurück zum Zitat Ramezani H, Rad HJ, Leus G (2013) Target localization and tracking for an isogradient sound speed profile. IEEE Trans Signal Process 61(6):1434–1446MathSciNetCrossRefMATH Ramezani H, Rad HJ, Leus G (2013) Target localization and tracking for an isogradient sound speed profile. IEEE Trans Signal Process 61(6):1434–1446MathSciNetCrossRefMATH
10.
Zurück zum Zitat Patwari N, Ash JN, Kyperountas S, Hero AO, Moses RL, Correal NS (2005) Locating the nodes: cooperative localization in wireless sensor networks. IEEE Signal Process Mag 22(4):54–69CrossRef Patwari N, Ash JN, Kyperountas S, Hero AO, Moses RL, Correal NS (2005) Locating the nodes: cooperative localization in wireless sensor networks. IEEE Signal Process Mag 22(4):54–69CrossRef
11.
Zurück zum Zitat Wang B, Zhou S, Liu W, Mo Y (2015) Indoor localization based on curve fitting and location search using received signal strength. IEEE Trans Ind Electron 62(1):572–582CrossRef Wang B, Zhou S, Liu W, Mo Y (2015) Indoor localization based on curve fitting and location search using received signal strength. IEEE Trans Ind Electron 62(1):572–582CrossRef
12.
Zurück zum Zitat Wang G, So AM-C, Li Y (2016) Robust convex approximation methods for tdoa-based localization under nlos conditions. IEEE Trans Signal Process 64(13):3281–3296MathSciNetCrossRefMATH Wang G, So AM-C, Li Y (2016) Robust convex approximation methods for tdoa-based localization under nlos conditions. IEEE Trans Signal Process 64(13):3281–3296MathSciNetCrossRefMATH
13.
Zurück zum Zitat Liu Z, Zheng Q, Xue L, Guan X (2012) A distributed energy-efficient clustering algorithm with improved coverage in wireless sensor networks. Futur Gener Comput Syst 28(5):780–790CrossRef Liu Z, Zheng Q, Xue L, Guan X (2012) A distributed energy-efficient clustering algorithm with improved coverage in wireless sensor networks. Futur Gener Comput Syst 28(5):780–790CrossRef
14.
Zurück zum Zitat Vaghefi RM, Gholami MR, Buehrer RM, Strom EG (2013) Cooperative received signal strength-based sensor localization with unknown transmit powers. IEEE Trans Signal Process 61(6):1389–1403MathSciNetCrossRefMATH Vaghefi RM, Gholami MR, Buehrer RM, Strom EG (2013) Cooperative received signal strength-based sensor localization with unknown transmit powers. IEEE Trans Signal Process 61(6):1389–1403MathSciNetCrossRefMATH
15.
Zurück zum Zitat Zhou Z, Peng Z, Cui J-H, Shi Z, Bagtzoglou A (2011) Scalable localization with mobility prediction for underwater sensor networks. IEEE Trans Mob Comput 10(3):335–348CrossRef Zhou Z, Peng Z, Cui J-H, Shi Z, Bagtzoglou A (2011) Scalable localization with mobility prediction for underwater sensor networks. IEEE Trans Mob Comput 10(3):335–348CrossRef
16.
Zurück zum Zitat Braca P, Willett P, LePage KD, Marano S, Matta V (2014) Bayesian tracking in underwater wireless sensor networks with port-starboard ambiguity. IEEE Trans Signal Process 62(7):1864–1878MathSciNetCrossRefMATH Braca P, Willett P, LePage KD, Marano S, Matta V (2014) Bayesian tracking in underwater wireless sensor networks with port-starboard ambiguity. IEEE Trans Signal Process 62(7):1864–1878MathSciNetCrossRefMATH
17.
Zurück zum Zitat Stojanovic M (2007) On the relationship between capacity and distance in an underwater acoustic communication channel. ACM SIGMOBILE Mob Comput Commun Rev 11(4):34–43CrossRef Stojanovic M (2007) On the relationship between capacity and distance in an underwater acoustic communication channel. ACM SIGMOBILE Mob Comput Commun Rev 11(4):34–43CrossRef
18.
Zurück zum Zitat Domingo MC (2008) Overview of channel models for underwater wireless communication networks. Phys Commun 1(3):163–182CrossRef Domingo MC (2008) Overview of channel models for underwater wireless communication networks. Phys Commun 1(3):163–182CrossRef
19.
Zurück zum Zitat Cho H-H, Chen C-Y, Shih TK, Chao H-C (2014) Survey on underwater delay/disruption tolerant wireless sensor network routing. IET Wireless Sens Syst 4(3):112–121CrossRef Cho H-H, Chen C-Y, Shih TK, Chao H-C (2014) Survey on underwater delay/disruption tolerant wireless sensor network routing. IET Wireless Sens Syst 4(3):112–121CrossRef
20.
Zurück zum Zitat Carroll P, Zhou S, Mahmood K, Zhou H, Xu X, Cui J-H (2012) On-demand asynchronous localization for underwater sensor networks. In: Oceans, 2012, pp 1–4 IEEE Carroll P, Zhou S, Mahmood K, Zhou H, Xu X, Cui J-H (2012) On-demand asynchronous localization for underwater sensor networks. In: Oceans, 2012, pp 1–4 IEEE
21.
Zurück zum Zitat Cheng X, Shu H, Liang Q, Du DH-C (2008) Silent positioning in underwater acoustic sensor networks. IEEE Trans Veh Technol 57(3):1756–1766CrossRef Cheng X, Shu H, Liang Q, Du DH-C (2008) Silent positioning in underwater acoustic sensor networks. IEEE Trans Veh Technol 57(3):1756–1766CrossRef
22.
Zurück zum Zitat Diamant R, Tan H-P, Lampe L (2010) Nlos identification using a hybrid toa-signal strength algorithm for underwater acoustic localization. In: Oceans, 2010, pp. 1–7 IEEE Diamant R, Tan H-P, Lampe L (2010) Nlos identification using a hybrid toa-signal strength algorithm for underwater acoustic localization. In: Oceans, 2010, pp. 1–7 IEEE
23.
Zurück zum Zitat Yu K, Guo YJ (2009) Statistical nlos identification based on aoa, toa, and signal strength. IEEE Trans Veh Technol 58(1):274–286CrossRef Yu K, Guo YJ (2009) Statistical nlos identification based on aoa, toa, and signal strength. IEEE Trans Veh Technol 58(1):274–286CrossRef
24.
Zurück zum Zitat Diamant R, Tan H-P, Lampe L (2014) Los and nlos classification for underwater acoustic localization. IEEE Trans Mob Comput 13(2):311–323CrossRef Diamant R, Tan H-P, Lampe L (2014) Los and nlos classification for underwater acoustic localization. IEEE Trans Mob Comput 13(2):311–323CrossRef
25.
Zurück zum Zitat Chen P-C (1999) A non-line-of-sight error mitigation algorithm in location estimation. In: Wireless Communications and Networking Conference, 1999. WCNC. 1999 IEEE, vol. 1, pp. 316–320 IEEE Chen P-C (1999) A non-line-of-sight error mitigation algorithm in location estimation. In: Wireless Communications and Networking Conference, 1999. WCNC. 1999 IEEE, vol. 1, pp. 316–320 IEEE
26.
Zurück zum Zitat Hammes U, Zoubir AM (2010) Robust mobile terminal tracking in nlos environments based on data association. IEEE Trans Signal Process 58:5872–5882MathSciNetCrossRefMATH Hammes U, Zoubir AM (2010) Robust mobile terminal tracking in nlos environments based on data association. IEEE Trans Signal Process 58:5872–5882MathSciNetCrossRefMATH
27.
Zurück zum Zitat Yin F, Fritsche C, Gustafsson F, Zoubir AM (2013) Toa-based robust wireless geolocation and cramér-rao lower bound analysis in harsh los/nlos environments. IEEE Trans Signal Process 61(9):2243–2255CrossRef Yin F, Fritsche C, Gustafsson F, Zoubir AM (2013) Toa-based robust wireless geolocation and cramér-rao lower bound analysis in harsh los/nlos environments. IEEE Trans Signal Process 61(9):2243–2255CrossRef
28.
Zurück zum Zitat Huang Y, Liang W, Yu H-b, Xiao Y (2008) Target tracking based on a distributed particle filter in underwater sensor networks. Wirel Commun Mob Comput 8(8):1023–1033CrossRef Huang Y, Liang W, Yu H-b, Xiao Y (2008) Target tracking based on a distributed particle filter in underwater sensor networks. Wirel Commun Mob Comput 8(8):1023–1033CrossRef
29.
Zurück zum Zitat Liu Z, Gao H, Wang W, Chang S, Chen J (2015) Color filtering localization for three-dimensional underwater acoustic sensor networks. Sensors 15(3):6009–6032CrossRef Liu Z, Gao H, Wang W, Chang S, Chen J (2015) Color filtering localization for three-dimensional underwater acoustic sensor networks. Sensors 15(3):6009–6032CrossRef
30.
Zurück zum Zitat Tian C, Liu W, Jin J, Wang Y, Mo Y (2007) Localization and synchronization for 3d underwater acoustic sensor networks. Ubiquitous Intelligence Comput, pp 622–631 Tian C, Liu W, Jin J, Wang Y, Mo Y (2007) Localization and synchronization for 3d underwater acoustic sensor networks. Ubiquitous Intelligence Comput, pp 622–631
31.
Zurück zum Zitat Zhou Z, Cui J.-H., Zhou S (2007) Localization for large-scale underwater sensor networks, Networking 2007. Ad Hoc and Sensor Networks, Wireless Networks, Next Generation Internet, pp 108–119 Zhou Z, Cui J.-H., Zhou S (2007) Localization for large-scale underwater sensor networks, Networking 2007. Ad Hoc and Sensor Networks, Wireless Networks, Next Generation Internet, pp 108–119
32.
Zurück zum Zitat Isbitiren G, Akan OB (2011) Three-dimensional underwater target tracking with acoustic sensor networks. IEEE Trans Veh Technol 60(8):3897–3906CrossRef Isbitiren G, Akan OB (2011) Three-dimensional underwater target tracking with acoustic sensor networks. IEEE Trans Veh Technol 60(8):3897–3906CrossRef
Metadaten
Titel
A three dimensional tracking scheme for underwater non-cooperative objects in mixed LOS and NLOS environment
Publikationsdatum
07.09.2018
Erschienen in
Peer-to-Peer Networking and Applications / Ausgabe 5/2019
Print ISSN: 1936-6442
Elektronische ISSN: 1936-6450
DOI
https://doi.org/10.1007/s12083-018-0678-5

Weitere Artikel der Ausgabe 5/2019

Peer-to-Peer Networking and Applications 5/2019 Zur Ausgabe

Premium Partner