Skip to main content

2020 | OriginalPaper | Buchkapitel

6. A Threshold Voltage Model for SiGe Source/Drain Silicon-Nanotube-Based Junctionless Field-Effect Transistor

verfasst von : Anchal Thakur, Rohit Dhiman

Erschienen in: Nanoscale VLSI

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An analytical threshold voltage model for SiGe source/drain silicon-nanotube junctionless field-effect transistor, based on the evanescent-mode analysis, is introduced. With the solution of three-dimensional Poisson equation in cylindrical coordinates, the surface potential along the channel length is determined with suitable boundary conditions. Using these models, the impact of physical device parameters such as core gate radius, oxide thickness, and nanotube thickness on the threshold voltage behavior and drain-induced barrier lowering has been studied. It is shown through extensive analysis that the proposed analytical models are in excellent agreement with TCAD numerical simulation results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Chang T-K (2012) A quasi-two-dimensional threshold voltage model for short-channel junctionless double-gate MOSFETs. IEEE Trans Electron Devices 59(9):2284–2289CrossRef Chang T-K (2012) A quasi-two-dimensional threshold voltage model for short-channel junctionless double-gate MOSFETs. IEEE Trans Electron Devices 59(9):2284–2289CrossRef
Zurück zum Zitat Chiang T-K (2009) A new two-dimensional analytical subthreshold behavior model for short-channel tri-material gate-stack SOI MOSFETs. Microelectron Rel 49:113–119CrossRef Chiang T-K (2009) A new two-dimensional analytical subthreshold behavior model for short-channel tri-material gate-stack SOI MOSFETs. Microelectron Rel 49:113–119CrossRef
Zurück zum Zitat Dabhi CK, Roy AS, Chauhan YS (2019) Compact modeling of temperature-dependent gate-induced drain leakage including low-field effects. IEEE Trans Electron Devices 66(7):2892–2897CrossRef Dabhi CK, Roy AS, Chauhan YS (2019) Compact modeling of temperature-dependent gate-induced drain leakage including low-field effects. IEEE Trans Electron Devices 66(7):2892–2897CrossRef
Zurück zum Zitat Dura J et al (2011) Analytical model of drain current in nanowire MOSFETs including quantum confinement band structure effects and quasi-ballistic transport: device to circuit performances analysis. In: Proceedings of the international conference on simulation of semiconductor processes and devices, pp 43–46 Dura J et al (2011) Analytical model of drain current in nanowire MOSFETs including quantum confinement band structure effects and quasi-ballistic transport: device to circuit performances analysis. In: Proceedings of the international conference on simulation of semiconductor processes and devices, pp 43–46
Zurück zum Zitat Fahad HM, Hussain MM (2013) High-performance silicon nanotube tunneling FET for ultralow-power logic applications. IEEE Trans Electron Devices 60(3):1034–1039CrossRef Fahad HM, Hussain MM (2013) High-performance silicon nanotube tunneling FET for ultralow-power logic applications. IEEE Trans Electron Devices 60(3):1034–1039CrossRef
Zurück zum Zitat Gnani E, Gnudi A, Reggiani S, Baccarani G (2011) Theory of the junctionless nanowire FET. IEEE Trans Electron Devices 58(9):2903–2910CrossRef Gnani E, Gnudi A, Reggiani S, Baccarani G (2011) Theory of the junctionless nanowire FET. IEEE Trans Electron Devices 58(9):2903–2910CrossRef
Zurück zum Zitat Hanna AN, Hussain MM (2015) Si/Ge hetero-structure nanotube tunnel field effect transistor. J Appl Phys 117(1):014310-1–014310-7 Hanna AN, Hussain MM (2015) Si/Ge hetero-structure nanotube tunnel field effect transistor. J Appl Phys 117(1):014310-1–014310-7
Zurück zum Zitat Hanna AN, Fahad HM, Hussain MM (2015) InAs/Si hetero-junction nanotube tunnel transistors. Sci Rep 9 Hanna AN, Fahad HM, Hussain MM (2015) InAs/Si hetero-junction nanotube tunnel transistors. Sci Rep 9
Zurück zum Zitat Khaveh HRT, Mohammadi S (2016) Potential and drain current modeling of gate-all-around tunnel FETs considering the junctions depletion regions and the channel mobile charge carriers. IEEE Trans Electron Devices 63(12):5021–5029CrossRef Khaveh HRT, Mohammadi S (2016) Potential and drain current modeling of gate-all-around tunnel FETs considering the junctions depletion regions and the channel mobile charge carriers. IEEE Trans Electron Devices 63(12):5021–5029CrossRef
Zurück zum Zitat Kumar MJ, Vishnoi R, Pandey P (2016) Tunnel field-effect transistors (TFET): modelling and simulation. Wiley, West Sussex, UK Kumar MJ, Vishnoi R, Pandey P (2016) Tunnel field-effect transistors (TFET): modelling and simulation. Wiley, West Sussex, UK
Zurück zum Zitat Kumar A, Bhushan S, Tiwari PK (2017) A threshold voltage model of silicon-nanotube-based ultrathin double gate-all-around (DGAA) MOSFETs incorporating quantum confinement effects. IEEE Trans Nanotechnol 16(5):868–875CrossRef Kumar A, Bhushan S, Tiwari PK (2017) A threshold voltage model of silicon-nanotube-based ultrathin double gate-all-around (DGAA) MOSFETs incorporating quantum confinement effects. IEEE Trans Nanotechnol 16(5):868–875CrossRef
Zurück zum Zitat Lee C-W, Afzalian A, Akhavan ND, Yan R, Ferain I, Colinge J-P (2009) Junctionless multigate field-effect transistor. Appl Phys Lett 94(5):053511–053512CrossRef Lee C-W, Afzalian A, Akhavan ND, Yan R, Ferain I, Colinge J-P (2009) Junctionless multigate field-effect transistor. Appl Phys Lett 94(5):053511–053512CrossRef
Zurück zum Zitat Li C, Zhuang Y, Di S, Han R (2013) Subthreshold behavior models for nanoscale short-channel junctionless cylindrical surrounding-gate MOSFETs. IEEE Trans Electron Devices 60(11):3655–3662CrossRef Li C, Zhuang Y, Di S, Han R (2013) Subthreshold behavior models for nanoscale short-channel junctionless cylindrical surrounding-gate MOSFETs. IEEE Trans Electron Devices 60(11):3655–3662CrossRef
Zurück zum Zitat Migita S, Morita Y, Matsukawa T, Masahara M, Ota H (2014) Experimental demonstration of ultrashort-channel (3 nm) junctionless FETs utilizing atomically sharp V-grooves on SOI. IEEE Trans Nanotechnol 13(2):208–215CrossRef Migita S, Morita Y, Matsukawa T, Masahara M, Ota H (2014) Experimental demonstration of ultrashort-channel (3 nm) junctionless FETs utilizing atomically sharp V-grooves on SOI. IEEE Trans Nanotechnol 13(2):208–215CrossRef
Zurück zum Zitat Rios R et al (2011) Comparison of junctionless and conventional trigate transistors with Lg down to 26 nm. IEEE Electron Device Lett 32(9):1170–1172CrossRef Rios R et al (2011) Comparison of junctionless and conventional trigate transistors with Lg down to 26 nm. IEEE Electron Device Lett 32(9):1170–1172CrossRef
Zurück zum Zitat Sahay S, Kumar MJ (2016) Realizing efficient volume depletion in SOI junctionless FETs. IEEE J Electron Devices Soc 4(3):110–115CrossRef Sahay S, Kumar MJ (2016) Realizing efficient volume depletion in SOI junctionless FETs. IEEE J Electron Devices Soc 4(3):110–115CrossRef
Zurück zum Zitat Saurabh S, Kumar MJ (2016) Fundamentals of tunnel field-effect transistors. CRC Press, Boca Raton, FL, USACrossRef Saurabh S, Kumar MJ (2016) Fundamentals of tunnel field-effect transistors. CRC Press, Boca Raton, FL, USACrossRef
Zurück zum Zitat Tekleab D (2014) Device performance of silicon nanotube field effect transistor. IEEE Electron Device Lett 35(5):506–508CrossRef Tekleab D (2014) Device performance of silicon nanotube field effect transistor. IEEE Electron Device Lett 35(5):506–508CrossRef
Zurück zum Zitat Thakur A, Dhiman R (2019) Performance analysis of SiGe source-drain hetero-structure nanotube junctionless FET. In: Proceedings of the TENCON, India, Oct 2019 Thakur A, Dhiman R (2019) Performance analysis of SiGe source-drain hetero-structure nanotube junctionless FET. In: Proceedings of the TENCON, India, Oct 2019
Metadaten
Titel
A Threshold Voltage Model for SiGe Source/Drain Silicon-Nanotube-Based Junctionless Field-Effect Transistor
verfasst von
Anchal Thakur
Rohit Dhiman
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-7937-0_6

Neuer Inhalt