Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 8/2022

22.10.2021 | Research Article-Computer Engineering and Computer Science

A Unified Deep Learning Framework of Multi-scale Detectors for Geo-spatial Object Detection in High-Resolution Satellite Images

verfasst von: Sultan Daud Khan, Louai Alarabi, Saleh Basalamah

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 8/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Geo-spatial object detection in high-resolution satellite images has many applications in urban planning, military applications, maritime surveillance, environment control and management. Despite the success of convolutional neural networks in object detection tasks in natural images, the current deep learning models face challenges in geo-spatial object detection in satellite images due to complex background, arbitrary views and large variations in object sizes. In this paper, we propose a framework that tackles these problems in efficient and effective way. The framework consists of two stages. The first stage generates multi-scale object proposals and the second stage classifies each proposal into different classes. The first stage utilizes feature pyramid network to obtain multi-scale feature maps and then convert each level of the pyramid into an independent multi-scale proposal generator by appending multiple region proposal networks (RPNs). We define scale range for each RPN to capture different scales of the target. The multi-scale object proposals are provided as input to the detection sub-network. We evaluate proposed framework on publicly available benchmark dataset, and from the experiment results, we demonstrate that proposed framework outperformed other reference methods

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dong, Z.; Wang, M.; Wang, Y.; Zhu, Y.; Zhang, Z.: Object detection in high resolution remote sensing imagery based on convolutional neural networks with suitable object scale features. IEEE Trans. Geosci. Remote Sens. 58(3), 2104–2114 (2019)CrossRef Dong, Z.; Wang, M.; Wang, Y.; Zhu, Y.; Zhang, Z.: Object detection in high resolution remote sensing imagery based on convolutional neural networks with suitable object scale features. IEEE Trans. Geosci. Remote Sens. 58(3), 2104–2114 (2019)CrossRef
2.
Zurück zum Zitat Aksoy, S.; Akçay, H.G.; Wassenaar, T.: Automatic mapping of linear woody vegetation features in agricultural landscapes using very high resolution imagery. IEEE Trans. Geosci. Remote Sens. 48(1), 511–522 (2009)CrossRef Aksoy, S.; Akçay, H.G.; Wassenaar, T.: Automatic mapping of linear woody vegetation features in agricultural landscapes using very high resolution imagery. IEEE Trans. Geosci. Remote Sens. 48(1), 511–522 (2009)CrossRef
3.
Zurück zum Zitat Holsten, S.: Global maritime surveillance with satellite-based ais. In: OCEANS 2009-EUROPE, pp. 1–4. IEEE (2009) Holsten, S.: Global maritime surveillance with satellite-based ais. In: OCEANS 2009-EUROPE, pp. 1–4. IEEE (2009)
4.
Zurück zum Zitat Kaack, L.H.; Chen, G.H.; Morgan, M.G.: Truck traffic monitoring with satellite images. In: Proceedings of the 2nd ACM SIGCAS Conference on Computing and Sustainable Societies, pp. 155–164 (2019) Kaack, L.H.; Chen, G.H.; Morgan, M.G.: Truck traffic monitoring with satellite images. In: Proceedings of the 2nd ACM SIGCAS Conference on Computing and Sustainable Societies, pp. 155–164 (2019)
5.
Zurück zum Zitat Sirmacek, B.; Unsalan, C.: A probabilistic framework to detect buildings in aerial and satellite images. IEEE Trans. Geosci. Remote Sens. 49(1), 211–221 (2010)CrossRef Sirmacek, B.; Unsalan, C.: A probabilistic framework to detect buildings in aerial and satellite images. IEEE Trans. Geosci. Remote Sens. 49(1), 211–221 (2010)CrossRef
6.
Zurück zum Zitat Kwan, C.; Ayhan, B.; Budavari, B.; Yan, L.; Perez, D.; Li, J.; Bernabe, S.; Plaza, A.: Deep learning for land cover classification using only a few bands. Remote Sens. 12(12), 2000 (2020)CrossRef Kwan, C.; Ayhan, B.; Budavari, B.; Yan, L.; Perez, D.; Li, J.; Bernabe, S.; Plaza, A.: Deep learning for land cover classification using only a few bands. Remote Sens. 12(12), 2000 (2020)CrossRef
7.
Zurück zum Zitat Zhang, X.; Zhu, K.; Chen, G.; Tan, X.; Zhang, L.; Dai, F.; Liao, P.; Gong, Y.: Geospatial object detection on high resolution remote sensing imagery based on double multi-scale feature pyramid network. Remote Sens. 11(7), 755 (2019)CrossRef Zhang, X.; Zhu, K.; Chen, G.; Tan, X.; Zhang, L.; Dai, F.; Liao, P.; Gong, Y.: Geospatial object detection on high resolution remote sensing imagery based on double multi-scale feature pyramid network. Remote Sens. 11(7), 755 (2019)CrossRef
8.
Zurück zum Zitat Chen, S.; Zhan, R.; Zhang, J.: Geospatial object detection in remote sensing imagery based on multiscale single-shot detector with activated semantics. Remote Sens. 10(6), 820 (2018)CrossRef Chen, S.; Zhan, R.; Zhang, J.: Geospatial object detection in remote sensing imagery based on multiscale single-shot detector with activated semantics. Remote Sens. 10(6), 820 (2018)CrossRef
9.
Zurück zum Zitat Tao, C.; Tan, Y.; Cai, H.; Tian, J.: Airport detection from large ikonos images using clustered sift keypoints and region information. IEEE Geosci. Remote Sens. Lett. 8(1), 128–132 (2010)CrossRef Tao, C.; Tan, Y.; Cai, H.; Tian, J.: Airport detection from large ikonos images using clustered sift keypoints and region information. IEEE Geosci. Remote Sens. Lett. 8(1), 128–132 (2010)CrossRef
10.
Zurück zum Zitat Xiao, Z.; Liu, Q.; Tang, G.; Zhai, X.: Elliptic Fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images. Int. J. Remote Sens. 36(2), 618–644 (2015)CrossRef Xiao, Z.; Liu, Q.; Tang, G.; Zhai, X.: Elliptic Fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images. Int. J. Remote Sens. 36(2), 618–644 (2015)CrossRef
11.
Zurück zum Zitat Sun, H.; Sun, X.; Wang, H.; Yu, L.; Li, X.: Automatic target detection in high-resolution remote sensing images using spatial sparse coding bag-of-words model. IEEE Geosci. Remote Sens. Lett. 9(1), 109–113 (2011)CrossRef Sun, H.; Sun, X.; Wang, H.; Yu, L.; Li, X.: Automatic target detection in high-resolution remote sensing images using spatial sparse coding bag-of-words model. IEEE Geosci. Remote Sens. Lett. 9(1), 109–113 (2011)CrossRef
12.
Zurück zum Zitat Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRef Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRef
13.
Zurück zum Zitat Wallach, H.M.: Topic modeling: beyond bag-of-words. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 977–984 (2006) Wallach, H.M.: Topic modeling: beyond bag-of-words. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 977–984 (2006)
14.
Zurück zum Zitat Dalal, N.; Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) Dalal, N.; Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)
15.
Zurück zum Zitat Kim, S.-W.; Kook, H.-K.; Sun, J.-Y.; Kang, M.-C.; Ko, S.-J .: Parallel feature pyramid network for object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 234–250 (2018) Kim, S.-W.; Kook, H.-K.; Sun, J.-Y.; Kang, M.-C.; Ko, S.-J .: Parallel feature pyramid network for object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 234–250 (2018)
16.
Zurück zum Zitat Kong, T.; Sun, F.; Tan, C.; Liu, H.; Huang, W.: Deep feature pyramid reconfiguration for object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 169–185 (2018) Kong, T.; Sun, F.; Tan, C.; Liu, H.; Huang, W.: Deep feature pyramid reconfiguration for object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 169–185 (2018)
17.
Zurück zum Zitat Liu, Y.; Li, H.; Yan, J.; Wei, F.; Wang, X; Tang, X.: Recurrent scale approximation for object detection in CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 571–579 (2017) Liu, Y.; Li, H.; Yan, J.; Wei, F.; Wang, X; Tang, X.: Recurrent scale approximation for object detection in CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 571–579 (2017)
18.
Zurück zum Zitat Singh, B.; Davis, L.S.: An analysis of scale invariance in object detection snip. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3578–3587 (2018) Singh, B.; Davis, L.S.: An analysis of scale invariance in object detection snip. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3578–3587 (2018)
19.
Zurück zum Zitat Piralilou, S.T.; Shahabi, H.; Jarihani, B.; Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.R.; Aryal, J.: Landslide detection using multi-scale image segmentation and different machine learning models in the higher Himalayas. Remote Sens. 11(21), 2575 (2019)CrossRef Piralilou, S.T.; Shahabi, H.; Jarihani, B.; Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.R.; Aryal, J.: Landslide detection using multi-scale image segmentation and different machine learning models in the higher Himalayas. Remote Sens. 11(21), 2575 (2019)CrossRef
20.
Zurück zum Zitat Tengtrairat, N.; Woo, W.L.; Parathai, P.; Aryupong, C.; Jitsangiam, P.; Rinchumphu, D.: Automated landslide-risk prediction using web gis and machine learning models. Sensors 21(13), 4620 (2021)CrossRef Tengtrairat, N.; Woo, W.L.; Parathai, P.; Aryupong, C.; Jitsangiam, P.; Rinchumphu, D.: Automated landslide-risk prediction using web gis and machine learning models. Sensors 21(13), 4620 (2021)CrossRef
21.
Zurück zum Zitat Chen, X.; Tian, G.Y.; Ding, S.; Ahmed, J.; Woo, W.L.: Tomographic reconstruction of rolling contact fatigues in rails using 3d eddy current pulsed thermography. IEEE Sens. J. 6, 66 (2021) Chen, X.; Tian, G.Y.; Ding, S.; Ahmed, J.; Woo, W.L.: Tomographic reconstruction of rolling contact fatigues in rails using 3d eddy current pulsed thermography. IEEE Sens. J. 6, 66 (2021)
22.
Zurück zum Zitat Ahonen, T.; Hadid, A.; Pietikäinen, M.: Face recognition with local binary patterns. In: European Conference on Computer Vision, pp. 469–481. Springer (2004) Ahonen, T.; Hadid, A.; Pietikäinen, M.: Face recognition with local binary patterns. In: European Conference on Computer Vision, pp. 469–481. Springer (2004)
23.
Zurück zum Zitat Dang, E.K.F.; Luk, R.W.P.; Allan, J.: Beyond bag-of-words: bigram-enhanced context-dependent term weights. J. Assoc. Inf. Sci. Technol. 65(6), 1134–1148 (2014)CrossRef Dang, E.K.F.; Luk, R.W.P.; Allan, J.: Beyond bag-of-words: bigram-enhanced context-dependent term weights. J. Assoc. Inf. Sci. Technol. 65(6), 1134–1148 (2014)CrossRef
24.
Zurück zum Zitat Lee, H.; Battle, A.; Raina, R.; Ng, A.Y.: Efficient sparse coding algorithms. In: Advances in Neural Information Processing Systems, pp. 801–808 (2007) Lee, H.; Battle, A.; Raina, R.; Ng, A.Y.: Efficient sparse coding algorithms. In: Advances in Neural Information Processing Systems, pp. 801–808 (2007)
25.
Zurück zum Zitat Inglada, J.: Automatic recognition of man-made objects in high resolution optical remote sensing images by SVM classification of geometric image features. ISPRS J. Photogramm. Remote Sens. 62(3), 236–248 (2007)CrossRef Inglada, J.: Automatic recognition of man-made objects in high resolution optical remote sensing images by SVM classification of geometric image features. ISPRS J. Photogramm. Remote Sens. 62(3), 236–248 (2007)CrossRef
26.
Zurück zum Zitat Hwang, J.; Jung, H.-S.: Automatic ship detection using the artificial neural network and support vector machine from x-band sar satellite images. Remote Sens. 10(11), 1799 (2018)CrossRef Hwang, J.; Jung, H.-S.: Automatic ship detection using the artificial neural network and support vector machine from x-band sar satellite images. Remote Sens. 10(11), 1799 (2018)CrossRef
27.
Zurück zum Zitat Li, W.; Xiang, S.; Wang, H.; Pan, C.: Robust airplane detection in satellite images. In: 2011 18th IEEE International Conference on Image Processing, pp. 2821–2824. IEEE (2011) Li, W.; Xiang, S.; Wang, H.; Pan, C.: Robust airplane detection in satellite images. In: 2011 18th IEEE International Conference on Image Processing, pp. 2821–2824. IEEE (2011)
28.
Zurück zum Zitat Shi, Z.; Yu, X.; Jiang, Z.; Li, B.: Ship detection in high-resolution optical imagery based on anomaly detector and local shape feature. IEEE Trans. Geosci. Remote Sens. 52(8), 4511–4523 (2013) Shi, Z.; Yu, X.; Jiang, Z.; Li, B.: Ship detection in high-resolution optical imagery based on anomaly detector and local shape feature. IEEE Trans. Geosci. Remote Sens. 52(8), 4511–4523 (2013)
29.
Zurück zum Zitat Cover, T.; Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)MATHCrossRef Cover, T.; Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)MATHCrossRef
30.
Zurück zum Zitat Ma, L.; Crawford, M.M.; Tian, J.: Local manifold learning-based \( k \)-nearest-neighbor for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 48(11), 4099–4109 (2010) Ma, L.; Crawford, M.M.; Tian, J.: Local manifold learning-based \( k \)-nearest-neighbor for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 48(11), 4099–4109 (2010)
31.
Zurück zum Zitat Yang, J.-M.; Yu, P.-T.; Kuo, B.-C.: A nonparametric feature extraction and its application to nearest neighbor classification for hyperspectral image data. IEEE Trans. Geosci. Remote Sens. 48(3), 1279–1293 (2009)CrossRef Yang, J.-M.; Yu, P.-T.; Kuo, B.-C.: A nonparametric feature extraction and its application to nearest neighbor classification for hyperspectral image data. IEEE Trans. Geosci. Remote Sens. 48(3), 1279–1293 (2009)CrossRef
32.
Zurück zum Zitat Lafferty, J.; McCallum, A.; Pereira, F.C.N.: Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data (2001) Lafferty, J.; McCallum, A.; Pereira, F.C.N.: Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data (2001)
33.
Zurück zum Zitat Zhong, P.; Wang, R.: A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images. IEEE Trans. Geosci. Remote Sens 45(12), 3978–3988 (2007)CrossRef Zhong, P.; Wang, R.: A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images. IEEE Trans. Geosci. Remote Sens 45(12), 3978–3988 (2007)CrossRef
34.
Zurück zum Zitat Li, E.; Femiani, J.; Shibiao, X.; Zhang, X.; Wonka, P.: Robust rooftop extraction from visible band images using higher order crf. IEEE Trans. Geosci. Remote Sens. 53(8), 4483–4495 (2015)CrossRef Li, E.; Femiani, J.; Shibiao, X.; Zhang, X.; Wonka, P.: Robust rooftop extraction from visible band images using higher order crf. IEEE Trans. Geosci. Remote Sens. 53(8), 4483–4495 (2015)CrossRef
35.
Zurück zum Zitat Wegne, J.D.; Soergel, U.; Rosenhahn, B.: Segment-based building detection with conditional random fields. In: 2011 Joint Urban Remote Sensing Event, pp. 205–208. IEEE (2011) Wegne, J.D.; Soergel, U.; Rosenhahn, B.: Segment-based building detection with conditional random fields. In: 2011 Joint Urban Remote Sensing Event, pp. 205–208. IEEE (2011)
36.
Zurück zum Zitat Yao, X.; Han, J.; Guo, L.; Shuhui, B.; Liu, Z.: A coarse-to-fine model for airport detection from remote sensing images using target-oriented visual saliency and crf. Neurocomputing 164, 162–172 (2015)CrossRef Yao, X.; Han, J.; Guo, L.; Shuhui, B.; Liu, Z.: A coarse-to-fine model for airport detection from remote sensing images using target-oriented visual saliency and crf. Neurocomputing 164, 162–172 (2015)CrossRef
37.
Zurück zum Zitat Malek, S.; Bazi, Y.; Alajlan, N.; AlHichri, H.; Melgani, F.: Efficient framework for palm tree detection in UAV images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7(12), 4692–4703 (2014)CrossRef Malek, S.; Bazi, Y.; Alajlan, N.; AlHichri, H.; Melgani, F.: Efficient framework for palm tree detection in UAV images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7(12), 4692–4703 (2014)CrossRef
38.
Zurück zum Zitat Tang, J.; Deng, C.; Huang, G.-B.; Zhao, B.: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Trans. Geosci. Remote Sens. 53(3), 1174–1185 (2014)CrossRef Tang, J.; Deng, C.; Huang, G.-B.; Zhao, B.: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Trans. Geosci. Remote Sens. 53(3), 1174–1185 (2014)CrossRef
39.
Zurück zum Zitat Jin, X.; Davis, C.H.: Vehicle detection from high-resolution satellite imagery using morphological shared-weight neural networks. Image Vis. Comput. 25(9), 1422–1431 (2007)CrossRef Jin, X.; Davis, C.H.: Vehicle detection from high-resolution satellite imagery using morphological shared-weight neural networks. Image Vis. Comput. 25(9), 1422–1431 (2007)CrossRef
40.
Zurück zum Zitat Mokhtarzade, M.; Valadan, M.J.; Zoej, A.: Road detection from high-resolution satellite images using artificial neural networks. Int. J. Appl. Earth Observ. Geoinform. 9(1), 32–40 (2007)CrossRef Mokhtarzade, M.; Valadan, M.J.; Zoej, A.: Road detection from high-resolution satellite images using artificial neural networks. Int. J. Appl. Earth Observ. Geoinform. 9(1), 32–40 (2007)CrossRef
41.
Zurück zum Zitat Pacifici, F.; Chini, M.; Emery, W.J.: A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote Sens. Environ. 113(6), 1276–1292 (2009)CrossRef Pacifici, F.; Chini, M.; Emery, W.J.: A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote Sens. Environ. 113(6), 1276–1292 (2009)CrossRef
42.
Zurück zum Zitat Hu, B.; Gao, B.; Woo, W.L.; Ruan, L.; Jin, J.; Yang, Y.; Yu, Y.: A lightweight spatial and temporal multi-feature fusion network for defect detection. IEEE Trans. Image Process. 30, 472–486 (2020)CrossRef Hu, B.; Gao, B.; Woo, W.L.; Ruan, L.; Jin, J.; Yang, Y.; Yu, Y.: A lightweight spatial and temporal multi-feature fusion network for defect detection. IEEE Trans. Image Process. 30, 472–486 (2020)CrossRef
43.
Zurück zum Zitat Ruan, L.; Gao, B.; Wu, S.; Woo, W.L.: Deftectnet: joint loss structured deep adversarial network for thermography defect detecting system. Neurocomputing 417, 441–457 (2020)CrossRef Ruan, L.; Gao, B.; Wu, S.; Woo, W.L.: Deftectnet: joint loss structured deep adversarial network for thermography defect detecting system. Neurocomputing 417, 441–457 (2020)CrossRef
44.
Zurück zum Zitat David Koh, B.H.; Lim, C.L.P.; Rahimi, H.; Woo, W.L.; Gao, B.: Deep temporal convolution network for time series classification. Sensors 21(2), 603 (2021)CrossRef David Koh, B.H.; Lim, C.L.P.; Rahimi, H.; Woo, W.L.; Gao, B.: Deep temporal convolution network for time series classification. Sensors 21(2), 603 (2021)CrossRef
45.
Zurück zum Zitat Ircio, J.; Lojo, A.; Mori, U.; Lozano, J.A.: Mutual information based feature subset selection in multivariate time series classification. Pattern Recognit. 108, 107525 (2020)CrossRef Ircio, J.; Lojo, A.; Mori, U.; Lozano, J.A.: Mutual information based feature subset selection in multivariate time series classification. Pattern Recognit. 108, 107525 (2020)CrossRef
46.
Zurück zum Zitat Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J.: Object detection in optical remote sensing images: a survey and a new benchmark. ISPRS J. Photogramm. Remote Sens. 159, 296–307 (2020)CrossRef Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J.: Object detection in optical remote sensing images: a survey and a new benchmark. ISPRS J. Photogramm. Remote Sens. 159, 296–307 (2020)CrossRef
47.
Zurück zum Zitat Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014) Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
48.
Zurück zum Zitat Uijlings, J.R.R.; Van De Sande, K.E.A.; Gevers, T.; Smeulders, A.W.M.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)CrossRef Uijlings, J.R.R.; Van De Sande, K.E.A.; Gevers, T.; Smeulders, A.W.M.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)CrossRef
49.
Zurück zum Zitat Ren, S.; He, K.; Girshick, R.; Sun, J.: Faster r-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015) Ren, S.; He, K.; Girshick, R.; Sun, J.: Faster r-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)
50.
Zurück zum Zitat He, K.; Gkioxari, G.; Dollár, P.; Girshick, R.: Mask r-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017) He, K.; Gkioxari, G.; Dollár, P.; Girshick, R.: Mask r-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
51.
Zurück zum Zitat Dai, J.; Li, Y.; He, K.; Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016) Dai, J.; Li, Y.; He, K.; Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)
52.
Zurück zum Zitat Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016) Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
53.
Zurück zum Zitat Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017) Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)
55.
Zurück zum Zitat Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S., Fu, C.-Y., Berg, A.C.: Ssd: single shot multibox detector. In: European Conference on Computer Vision, pp. 21–37. Springer (2016) Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S., Fu, C.-Y., Berg, A.C.: Ssd: single shot multibox detector. In: European Conference on Computer Vision, pp. 21–37. Springer (2016)
56.
Zurück zum Zitat Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y.: Overfeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229 (2013) Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y.: Overfeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:​1312.​6229 (2013)
57.
Zurück zum Zitat Ren, Y.; Zhu, C.; Xiao, S.: Small object detection in optical remote sensing images via modified faster r-CNN. Appl. Sci. 8(5), 813 (2018)CrossRef Ren, Y.; Zhu, C.; Xiao, S.: Small object detection in optical remote sensing images via modified faster r-CNN. Appl. Sci. 8(5), 813 (2018)CrossRef
58.
Zurück zum Zitat Pang, J.; Li, C.; Shi, J.; Zhihai, X.; Feng, H.: Fast tiny object detection in large-scale remote sensing images. IEEE Trans. Geosci. Remote Sens. 57(8), 5512–5524 (2019)CrossRef Pang, J.; Li, C.; Shi, J.; Zhihai, X.; Feng, H.: Fast tiny object detection in large-scale remote sensing images. IEEE Trans. Geosci. Remote Sens. 57(8), 5512–5524 (2019)CrossRef
59.
Zurück zum Zitat Cheng, G.; Si, Y.; Hong, H.; Yao, X.; Guo, L.: Cross-scale feature fusion for object detection in optical remote sensing images. IEEE Geosci. Remote Sens. Lett. 6, 66 (2020) Cheng, G.; Si, Y.; Hong, H.; Yao, X.; Guo, L.: Cross-scale feature fusion for object detection in optical remote sensing images. IEEE Geosci. Remote Sens. Lett. 6, 66 (2020)
60.
Zurück zum Zitat Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020) Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:​2004.​10934 (2020)
61.
Zurück zum Zitat Tan, M.; Pang, R.; Le, Q.V.: Efficientdet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781–10790 (2020) Tan, M.; Pang, R.; Le, Q.V.: Efficientdet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781–10790 (2020)
62.
Zurück zum Zitat Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
63.
Zurück zum Zitat Wang, K.; Liew, J.H.; Zou, Y.; Zhou, D.; Feng, J.: Panet: few-shot image semantic segmentation with prototype alignment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9197–9206 (2019) Wang, K.; Liew, J.H.; Zou, Y.; Zhou, D.; Feng, J.: Panet: few-shot image semantic segmentation with prototype alignment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9197–9206 (2019)
64.
Zurück zum Zitat Cheng, G.; Yang, C.; Yao, X.; Guo, L.; Han, J.: When deep learning meets metric learning: remote sensing image scene classification via learning discriminative CNNs. IEEE Trans. Geosci. Remote Sens. 56(5), 2811–2821 (2018)CrossRef Cheng, G.; Yang, C.; Yao, X.; Guo, L.; Han, J.: When deep learning meets metric learning: remote sensing image scene classification via learning discriminative CNNs. IEEE Trans. Geosci. Remote Sens. 56(5), 2811–2821 (2018)CrossRef
65.
Zurück zum Zitat Cheng, G.; Zhou, P.; Han, J.: Learning rotation-invariant convolutional neural networks for object detection in vhr optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 54(12), 7405–7415 (2016)CrossRef Cheng, G.; Zhou, P.; Han, J.: Learning rotation-invariant convolutional neural networks for object detection in vhr optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 54(12), 7405–7415 (2016)CrossRef
66.
Zurück zum Zitat Cheng, L.; Liu, X.; Li, L.; Jiao, L.; Tang, X.: Deep adaptive proposal network for object detection in optical remote sensing images. arXiv preprint arXiv:1807.07327 (2018) Cheng, L.; Liu, X.; Li, L.; Jiao, L.; Tang, X.: Deep adaptive proposal network for object detection in optical remote sensing images. arXiv preprint arXiv:​1807.​07327 (2018)
67.
Zurück zum Zitat Farooq, A.; Hu, J.; Jia, X.: Efficient object proposals extraction for target detection in vhr remote sensing images. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3337–3340. IEEE (2017) Farooq, A.; Hu, J.; Jia, X.: Efficient object proposals extraction for target detection in vhr remote sensing images. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3337–3340. IEEE (2017)
68.
Zurück zum Zitat Guo, W.; Yang, W.; Zhang, H.; Hua, G.: Geospatial object detection in high resolution satellite images based on multi-scale convolutional neural network. Remote Sens. 10(1), 131 (2018)CrossRef Guo, W.; Yang, W.; Zhang, H.; Hua, G.: Geospatial object detection in high resolution satellite images based on multi-scale convolutional neural network. Remote Sens. 10(1), 131 (2018)CrossRef
69.
Zurück zum Zitat Han, J.; Zhang, D.; Cheng, G.; Guo, L.; Ren, J.: Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans. Geosci. Remote Sens. 53(6), 3325–3337 (2014)CrossRef Han, J.; Zhang, D.; Cheng, G.; Guo, L.; Ren, J.: Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans. Geosci. Remote Sens. 53(6), 3325–3337 (2014)CrossRef
70.
Zurück zum Zitat Han, X.; Zhong, Y.; Feng, R.; Zhang, L.: Robust geospatial object detection based on pre-trained faster r-CNN framework for high spatial resolution imagery. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3353–3356. IEEE (2017) Han, X.; Zhong, Y.; Feng, R.; Zhang, L.: Robust geospatial object detection based on pre-trained faster r-CNN framework for high spatial resolution imagery. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3353–3356. IEEE (2017)
71.
Zurück zum Zitat Li, K.; Cheng, G.; Shuhui, B.; You, X.: Rotation-insensitive and context-augmented object detection in remote sensing images. IEEE Trans. Geosci. Remote Sens. 56(4), 2337–2348 (2017)CrossRef Li, K.; Cheng, G.; Shuhui, B.; You, X.: Rotation-insensitive and context-augmented object detection in remote sensing images. IEEE Trans. Geosci. Remote Sens. 56(4), 2337–2348 (2017)CrossRef
72.
Zurück zum Zitat Ševo, I.; Avramović, A.: Convolutional neural network based automatic object detection on aerial images. IEEE Geosci. Remote Sens.Lett. 13(5), 740–744 (2016)CrossRef Ševo, I.; Avramović, A.: Convolutional neural network based automatic object detection on aerial images. IEEE Geosci. Remote Sens.Lett. 13(5), 740–744 (2016)CrossRef
73.
Zurück zum Zitat Long, Y.; Gong, Y.; Xiao, Z.; Liu, Q.: Accurate object localization in remote sensing images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 55(5), 2486–2498 (2017)CrossRef Long, Y.; Gong, Y.; Xiao, Z.; Liu, Q.: Accurate object localization in remote sensing images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 55(5), 2486–2498 (2017)CrossRef
74.
Zurück zum Zitat Turner, J.T.; Gupta, K.; Morris, B.; Aha, D.W.: Keypoint density-based region proposal for fine-grained object detection and classification using regions with convolutional neural network features. arXiv preprint arXiv:1603.00502 (2016) Turner, J.T.; Gupta, K.; Morris, B.; Aha, D.W.: Keypoint density-based region proposal for fine-grained object detection and classification using regions with convolutional neural network features. arXiv preprint arXiv:​1603.​00502 (2016)
75.
Zurück zum Zitat Arbeláez, P.; Pont-Tuset, J.; Barron, J.T.; Marques, F.; Malik, J.: Multiscale combinatorial grouping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 328–335 (2014) Arbeláez, P.; Pont-Tuset, J.; Barron, J.T.; Marques, F.; Malik, J.: Multiscale combinatorial grouping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 328–335 (2014)
76.
Zurück zum Zitat Cai, Z.; Fan, Q.; Feris, R.S.; Vasconcelos, N.: A unified multi-scale deep convolutional neural network for fast object detection. In: European Conference on Computer Vision, pp. 354–370. Springer (2016) Cai, Z.; Fan, Q.; Feris, R.S.; Vasconcelos, N.: A unified multi-scale deep convolutional neural network for fast object detection. In: European Conference on Computer Vision, pp. 354–370. Springer (2016)
77.
Zurück zum Zitat Zhuang, S.; Wang, P.; Jiang, B.; Wang, G.; Wang, C.: A single shot framework with multi-scale feature fusion for geospatial object detection. Remote Sens. 11(5), 594 (2019)CrossRef Zhuang, S.; Wang, P.; Jiang, B.; Wang, G.; Wang, C.: A single shot framework with multi-scale feature fusion for geospatial object detection. Remote Sens. 11(5), 594 (2019)CrossRef
78.
Zurück zum Zitat Sultan Daud Khan and Saleh Basalamah: Multi-scale person localization with multi-stage deep sequential framework. Int. J. Comput. Intell. Syst. 14(1), 1217–1228 (2021)CrossRef Sultan Daud Khan and Saleh Basalamah: Multi-scale person localization with multi-stage deep sequential framework. Int. J. Comput. Intell. Syst. 14(1), 1217–1228 (2021)CrossRef
79.
Zurück zum Zitat Khan, S.D.; Basalamah, S.: Scale and density invariant head detection deep model for crowd counting in pedestrian crowds. Vis. Comput. 66, 1–11 (2020) Khan, S.D.; Basalamah, S.: Scale and density invariant head detection deep model for crowd counting in pedestrian crowds. Vis. Comput. 66, 1–11 (2020)
80.
Zurück zum Zitat Tan, X.; Xiao, Z.; Wan, Q.; Shao, W.: Scale sensitive neural network for road segmentation in high-resolution remote sensing images. IEEE Geosci. Remote Sens. Lett. 18(3), 533–537 (2020)CrossRef Tan, X.; Xiao, Z.; Wan, Q.; Shao, W.: Scale sensitive neural network for road segmentation in high-resolution remote sensing images. IEEE Geosci. Remote Sens. Lett. 18(3), 533–537 (2020)CrossRef
81.
Zurück zum Zitat He, K.; Zhang, X.; Ren, S.; Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) He, K.; Zhang, X.; Ren, S.; Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
82.
Zurück zum Zitat Simonyan, K.; Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014) Simonyan, K.; Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:​1409.​1556 (2014)
83.
Zurück zum Zitat Krizhevsky, A.; Sutskever, I.; Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012) Krizhevsky, A.; Sutskever, I.; Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
84.
Zurück zum Zitat Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017) Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
85.
Zurück zum Zitat Jie, Z.; Lu, W.F.; Sakhavi, S.; Wei, Y.; Tay, E.H.F.; Yan, S.: Object proposal generation with fully convolutional networks. IEEE Trans. Circuits Syst. Video Technol. 28(1), 62–75 (2016)CrossRef Jie, Z.; Lu, W.F.; Sakhavi, S.; Wei, Y.; Tay, E.H.F.; Yan, S.: Object proposal generation with fully convolutional networks. IEEE Trans. Circuits Syst. Video Technol. 28(1), 62–75 (2016)CrossRef
86.
Zurück zum Zitat Yang, S.; Xiong, Y.; Loy, C.C.; Tang, X.: Face detection through scale-friendly deep convolutional networks. arXiv preprint arXiv:1706.02863 (2017) Yang, S.; Xiong, Y.; Loy, C.C.; Tang, X.: Face detection through scale-friendly deep convolutional networks. arXiv preprint arXiv:​1706.​02863 (2017)
87.
Zurück zum Zitat Müller, J.; Fregin, A.; Dietmayer, K.: Disparity sliding window: object proposals from disparity images. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5777–5784. IEEE (2018) Müller, J.; Fregin, A.; Dietmayer, K.: Disparity sliding window: object proposals from disparity images. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5777–5784. IEEE (2018)
88.
Zurück zum Zitat Girshick, R.: Fast r-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015) Girshick, R.: Fast r-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)
89.
Zurück zum Zitat Glorot, X.; Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010) Glorot, X.; Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)
90.
Zurück zum Zitat Cheng, G.; Han, J.; Zhou, P.; Guo, L.: Multi-class geospatial object detection and geographic image classification based on collection of part detectors. ISPRS J. Photogramm. Remote Sens. 98, 119–132 (2014)CrossRef Cheng, G.; Han, J.; Zhou, P.; Guo, L.: Multi-class geospatial object detection and geographic image classification based on collection of part detectors. ISPRS J. Photogramm. Remote Sens. 98, 119–132 (2014)CrossRef
91.
Zurück zum Zitat Cheng, G.; Han, J.: A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 117, 11–28 (2016)CrossRef Cheng, G.; Han, J.: A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 117, 11–28 (2016)CrossRef
92.
Zurück zum Zitat Cramer, M.: The dgpf-test on digital airborne camera evaluation—overview and test design. Photogrammetrie Fernerkundung Geoinform. 66(2), 73–82 (2010)MathSciNetCrossRef Cramer, M.: The dgpf-test on digital airborne camera evaluation—overview and test design. Photogrammetrie Fernerkundung Geoinform. 66(2), 73–82 (2010)MathSciNetCrossRef
93.
Zurück zum Zitat Zhang, D.; Han, J.; Cheng, G.; Liu, Z.; Shuhui, B.; Guo, L.: Weakly supervised learning for target detection in remote sensing images. IEEE Geosci. Remote Sens. Lett. 12(4), 701–705 (2014)CrossRef Zhang, D.; Han, J.; Cheng, G.; Liu, Z.; Shuhui, B.; Guo, L.: Weakly supervised learning for target detection in remote sensing images. IEEE Geosci. Remote Sens. Lett. 12(4), 701–705 (2014)CrossRef
94.
Zurück zum Zitat Xia, G.-S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L.: Dota: a large-scale dataset for object detection in aerial images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3974–3983 (2018) Xia, G.-S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L.: Dota: a large-scale dataset for object detection in aerial images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3974–3983 (2018)
95.
Zurück zum Zitat Sheng, X.; Fang, T.; Li, D.; Wang, S.: Object classification of aerial images with bag-of-visual words. IEEE Geosci. Remote Sens. Lett. 7(2), 366–370 (2009)CrossRef Sheng, X.; Fang, T.; Li, D.; Wang, S.: Object classification of aerial images with bag-of-visual words. IEEE Geosci. Remote Sens. Lett. 7(2), 366–370 (2009)CrossRef
96.
Zurück zum Zitat Han, J.; Zhou, P.; Zhang, D.; Cheng, G.; Guo, L.; Liu, Z.; Shuhui, B.; Jun, W.: Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding. ISPRS J. Photogramm. Remote Sens. 89, 37–48 (2014)CrossRef Han, J.; Zhou, P.; Zhang, D.; Cheng, G.; Guo, L.; Liu, Z.; Shuhui, B.; Jun, W.: Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding. ISPRS J. Photogramm. Remote Sens. 89, 37–48 (2014)CrossRef
97.
Zurück zum Zitat Han, X.; Zhong, Y.; Zhang, L.: An efficient and robust integrated geospatial object detection framework for high spatial resolution remote sensing imagery. Remote Sens. 9(7), 666 (2017)CrossRef Han, X.; Zhong, Y.; Zhang, L.: An efficient and robust integrated geospatial object detection framework for high spatial resolution remote sensing imagery. Remote Sens. 9(7), 666 (2017)CrossRef
98.
Zurück zum Zitat Xu, Z.; Xu, X.; Lei, W.; Rui, Y.; Pu, F.: Deformable convnet with aspect ratio constrained NMS for object detection in remote sensing imagery. Remote Sens. 9(12), 1312 (2017)CrossRef Xu, Z.; Xu, X.; Lei, W.; Rui, Y.; Pu, F.: Deformable convnet with aspect ratio constrained NMS for object detection in remote sensing imagery. Remote Sens. 9(12), 1312 (2017)CrossRef
99.
Zurück zum Zitat Zou, Z.; Shi, Z.: Random access memories: a new paradigm for target detection in high resolution aerial remote sensing images. IEEE Trans. Image Process. 27(3), 1100–1111 (2017)MathSciNetMATHCrossRef Zou, Z.; Shi, Z.: Random access memories: a new paradigm for target detection in high resolution aerial remote sensing images. IEEE Trans. Image Process. 27(3), 1100–1111 (2017)MathSciNetMATHCrossRef
100.
Zurück zum Zitat Dong, R.; Xu, D.; Zhao, J.; Jiao, L.; An, J.: Sig-nms-based faster r-CNN combining transfer learning for small target detection in vhr optical remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 57(11), 8534–8545 (2019)CrossRef Dong, R.; Xu, D.; Zhao, J.; Jiao, L.; An, J.: Sig-nms-based faster r-CNN combining transfer learning for small target detection in vhr optical remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 57(11), 8534–8545 (2019)CrossRef
Metadaten
Titel
A Unified Deep Learning Framework of Multi-scale Detectors for Geo-spatial Object Detection in High-Resolution Satellite Images
verfasst von
Sultan Daud Khan
Louai Alarabi
Saleh Basalamah
Publikationsdatum
22.10.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 8/2022
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-06288-x

Weitere Artikel der Ausgabe 8/2022

Arabian Journal for Science and Engineering 8/2022 Zur Ausgabe

Research Article-Computer Engineering and Computer Science

An Adaptive Gaussian Kernel for Support Vector Machine

Research Article-Computer Engineering and Computer Science

Transformer-Based Word Embedding With CNN Model to Detect Sarcasm and Irony

Research Article-Computer Engineering and Computer Science

A Chaos–Infused Moth–Flame Optimizer

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.