Skip to main content
Erschienen in: BIT Numerical Mathematics 2/2021

21.01.2021

Abel’s integral operator: sparse representation based on multiwavelets

verfasst von: Behzad Nemati Saray

Erschienen in: BIT Numerical Mathematics | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, Abel’s integral operator is represented based on Alpert’s multiwavelets as a sparse matrix and then a non-linear Abel’s integral equation of the second kind is solved by multiwavelets Galerkin method. Nonlinearity and singularity make the numerical procedure more challenging. But the proposed scheme overcomes these problems. Convergence analysis is investigated and some numerical examples validated this analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alpert, B.: A class of bases in \(L^2\) for the sparse representation of integral operators. SIAM J. Math. Anal. 24(1), 246–262 (1993)MathSciNetMATH Alpert, B.: A class of bases in \(L^2\) for the sparse representation of integral operators. SIAM J. Math. Anal. 24(1), 246–262 (1993)MathSciNetMATH
2.
Zurück zum Zitat Alpert, B., Beylkin, G., Coifman, R.R., Rokhlin, V.: Wavelet-like bases for the fast solution of second-kind integral equations. SIAM J. Sci. Stat. Comput. 14(1), 159–184 (1993)MathSciNetMATHCrossRef Alpert, B., Beylkin, G., Coifman, R.R., Rokhlin, V.: Wavelet-like bases for the fast solution of second-kind integral equations. SIAM J. Sci. Stat. Comput. 14(1), 159–184 (1993)MathSciNetMATHCrossRef
3.
Zurück zum Zitat Alpert, B., Beylkin, G., Gines, D., Vozovoi, L.: Adaptive solution of partial differential equations in multiwavelet bases. J. Comput. Phys. 182, 149–190 (2002)MathSciNetMATHCrossRef Alpert, B., Beylkin, G., Gines, D., Vozovoi, L.: Adaptive solution of partial differential equations in multiwavelet bases. J. Comput. Phys. 182, 149–190 (2002)MathSciNetMATHCrossRef
5.
6.
7.
Zurück zum Zitat Bownds, J.M.: A combined recursive collocation and kernel approximation technique for certain singular Volterra integral equations. J. Integral Equ. 1(2), 153–164 (1979)MathSciNetMATH Bownds, J.M.: A combined recursive collocation and kernel approximation technique for certain singular Volterra integral equations. J. Integral Equ. 1(2), 153–164 (1979)MathSciNetMATH
8.
Zurück zum Zitat Brunner, H.: nonpolynomial spline collocation for Volterra equations with weakly singular kernels. SIAM J. Numer. Anal. 20(6), 1106–1119 (1983)MathSciNetMATHCrossRef Brunner, H.: nonpolynomial spline collocation for Volterra equations with weakly singular kernels. SIAM J. Numer. Anal. 20(6), 1106–1119 (1983)MathSciNetMATHCrossRef
9.
Zurück zum Zitat Brunner, H.: The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes. Math. Comput. 45(172), 417–437 (1985)MathSciNetMATHCrossRef Brunner, H.: The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes. Math. Comput. 45(172), 417–437 (1985)MathSciNetMATHCrossRef
10.
Zurück zum Zitat Brunner, H., Crisci, M.R., Russo, E., Vecchio, A.: A family of methods for Abel integral equations of the second kind. J. Comput. Appl. Math. 34, 211–219 (1991)MathSciNetMATHCrossRef Brunner, H., Crisci, M.R., Russo, E., Vecchio, A.: A family of methods for Abel integral equations of the second kind. J. Comput. Appl. Math. 34, 211–219 (1991)MathSciNetMATHCrossRef
11.
Zurück zum Zitat Comeron, R.F., Mckee, S.: Product integration methods for second-kind Abel integral equations. J. Comput. Appl. Math. 11, 1–10 (1984)MathSciNetCrossRef Comeron, R.F., Mckee, S.: Product integration methods for second-kind Abel integral equations. J. Comput. Appl. Math. 11, 1–10 (1984)MathSciNetCrossRef
12.
Zurück zum Zitat Cameron, R.F., Mckee, S.: The analysis of product integration methods for Abel’s equation using discrete fractional differentiation. IMA J. Numer. Anal. 5(3), 339–353 (1985)MathSciNetMATHCrossRef Cameron, R.F., Mckee, S.: The analysis of product integration methods for Abel’s equation using discrete fractional differentiation. IMA J. Numer. Anal. 5(3), 339–353 (1985)MathSciNetMATHCrossRef
13.
Zurück zum Zitat Dahlquist, G., Björck, A.: Numerical Methods. Prentice Hall, Englewood Cliffs (1974)MATH Dahlquist, G., Björck, A.: Numerical Methods. Prentice Hall, Englewood Cliffs (1974)MATH
15.
Zurück zum Zitat Evans, G.: Volterra’s integral equation of the second kind, with discontinuous kernel. Trans. Am. Math. Soc. 11(4), 393–413 (1910)MathSciNetMATH Evans, G.: Volterra’s integral equation of the second kind, with discontinuous kernel. Trans. Am. Math. Soc. 11(4), 393–413 (1910)MathSciNetMATH
16.
Zurück zum Zitat Gorenflo, R., Vessella, S.: Abel Integral Equations: Analysis and Applications. Springer, Berlin (1991)MATHCrossRef Gorenflo, R., Vessella, S.: Abel Integral Equations: Analysis and Applications. Springer, Berlin (1991)MATHCrossRef
17.
Zurück zum Zitat Goncerzewicz, J., Marcinkowska, H., Okrasinski, W., Tabisz, K.: On percolation of water from a cylindrical reservoir into the surrounding soil. Appl. Math. 16, 249–261 (1978)MathSciNetMATH Goncerzewicz, J., Marcinkowska, H., Okrasinski, W., Tabisz, K.: On percolation of water from a cylindrical reservoir into the surrounding soil. Appl. Math. 16, 249–261 (1978)MathSciNetMATH
18.
Zurück zum Zitat Hairer, E., Lubich, C., Schlichte, M.: Fast numerical solution of weakly singular Volterra integral equations. J. Comput. Appl. Math. 23(1), 87–98 (1988)MathSciNetMATHCrossRef Hairer, E., Lubich, C., Schlichte, M.: Fast numerical solution of weakly singular Volterra integral equations. J. Comput. Appl. Math. 23(1), 87–98 (1988)MathSciNetMATHCrossRef
19.
Zurück zum Zitat Hovhaüller, N., Schäfer, R.: Aaptive multiresolution discontinuous Galerkin schemes for conservation laws. Math. Comput. 83(285), 113–151 (2014) Hovhaüller, N., Schäfer, R.: Aaptive multiresolution discontinuous Galerkin schemes for conservation laws. Math. Comput. 83(285), 113–151 (2014)
20.
Zurück zum Zitat Keller, J.J.: Propagation of simple nonlinear waves in gas filled tubes with friction. Z. Angew. Math. Phys. 32, 170–181 (1981)MATHCrossRef Keller, J.J.: Propagation of simple nonlinear waves in gas filled tubes with friction. Z. Angew. Math. Phys. 32, 170–181 (1981)MATHCrossRef
21.
Zurück zum Zitat Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 24. Elsevier B. V, Amsterdam (2006)MATH Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 24. Elsevier B. V, Amsterdam (2006)MATH
22.
Zurück zum Zitat Liang, H., Brunner, H.: The convergence of collocation solutions in continuous piecewise polynomial spaces for weakly singular Volterra integral equations. SIAM J. Numer. Anal. 57(4), 1875–1896 (2019)MathSciNetMATHCrossRef Liang, H., Brunner, H.: The convergence of collocation solutions in continuous piecewise polynomial spaces for weakly singular Volterra integral equations. SIAM J. Numer. Anal. 57(4), 1875–1896 (2019)MathSciNetMATHCrossRef
23.
Zurück zum Zitat Lubich, C.H.: A stability analysis of convolution quadraturea for Abel–Volterra integral equations. IMA J. Numer. Anal. 6(1), 87–101 (1986)MathSciNetMATHCrossRef Lubich, C.H.: A stability analysis of convolution quadraturea for Abel–Volterra integral equations. IMA J. Numer. Anal. 6(1), 87–101 (1986)MathSciNetMATHCrossRef
24.
Zurück zum Zitat Lubich, C.H.: Fractional linear multistep methods for Abel–Volterra integral equations of the first kind. IMA J. Numer. Anal. 7(1), 97–106 (1987)MathSciNetMATHCrossRef Lubich, C.H.: Fractional linear multistep methods for Abel–Volterra integral equations of the first kind. IMA J. Numer. Anal. 7(1), 97–106 (1987)MathSciNetMATHCrossRef
25.
Zurück zum Zitat Lubich, C.H.: Runge–Kutta theory for Volterra and Abel integral equations of the second kind. Math. Comput. 41(163), 87–102 (1983)MathSciNetMATHCrossRef Lubich, C.H.: Runge–Kutta theory for Volterra and Abel integral equations of the second kind. Math. Comput. 41(163), 87–102 (1983)MathSciNetMATHCrossRef
26.
Zurück zum Zitat Mallat, S.G.: A Wavelet Tour of Signal Processing. Academic Press, Cambridge (1999)MATH Mallat, S.G.: A Wavelet Tour of Signal Processing. Academic Press, Cambridge (1999)MATH
27.
Zurück zum Zitat Mann, W.R., Wolf, F.: Heat transfer between solids and gases under nonlinear boundary conditions. Q. Appl. Math. 9, 163–184 (1951)MathSciNetMATHCrossRef Mann, W.R., Wolf, F.: Heat transfer between solids and gases under nonlinear boundary conditions. Q. Appl. Math. 9, 163–184 (1951)MathSciNetMATHCrossRef
28.
Zurück zum Zitat Meyer, Y.: Wavelets and Operators. Cambridge University Press, Cambridge (1992)MATH Meyer, Y.: Wavelets and Operators. Cambridge University Press, Cambridge (1992)MATH
29.
Zurück zum Zitat Milici, C., Drăgănescu, G., Machado, J.T.: Introduction to Fractional Differential Equations. Springer, Berlin (2019)MATHCrossRef Milici, C., Drăgănescu, G., Machado, J.T.: Introduction to Fractional Differential Equations. Springer, Berlin (2019)MATHCrossRef
30.
Zurück zum Zitat Mohamed, R.A., Mohamed, M.M., Wen-Xiu, M.: Solution of nonlinear Volterra integral equations with weakly singular kernel by using the HOBW method. Adv. Math. Phys. 2019, 1–10 (2019)MathSciNetMATH Mohamed, R.A., Mohamed, M.M., Wen-Xiu, M.: Solution of nonlinear Volterra integral equations with weakly singular kernel by using the HOBW method. Adv. Math. Phys. 2019, 1–10 (2019)MathSciNetMATH
31.
Zurück zum Zitat Sabermahani, S., Ordokhani, Y., Yousefi, S.A.: Numerical approach based on fractional-order Lagrange polynomials for solving a class of fractional differential equations. Comput. Appl. Math. 37(3), 3846–3868 (2018)MathSciNetMATHCrossRef Sabermahani, S., Ordokhani, Y., Yousefi, S.A.: Numerical approach based on fractional-order Lagrange polynomials for solving a class of fractional differential equations. Comput. Appl. Math. 37(3), 3846–3868 (2018)MathSciNetMATHCrossRef
32.
Zurück zum Zitat Saray, B.N.: An effcient algorithm for solving Volterra integro-differential equations based on Alpert’s multi-wavelets Galerkin method. J. Comput. Appl. Math. 348, 453–465 (2019)MathSciNetMATHCrossRef Saray, B.N.: An effcient algorithm for solving Volterra integro-differential equations based on Alpert’s multi-wavelets Galerkin method. J. Comput. Appl. Math. 348, 453–465 (2019)MathSciNetMATHCrossRef
33.
Zurück zum Zitat Saray, B.N., Lakestani, M., Razzaghi, M.: Sparse representation of system of Fredholm integro-differential equations by using Alpert multiwavelets. Comput. Math. Math. Phys. 55(9), 1468–1483 (2015)MathSciNetMATHCrossRef Saray, B.N., Lakestani, M., Razzaghi, M.: Sparse representation of system of Fredholm integro-differential equations by using Alpert multiwavelets. Comput. Math. Math. Phys. 55(9), 1468–1483 (2015)MathSciNetMATHCrossRef
34.
Zurück zum Zitat Saray, B.N., Manafian, J.: Sparse representation of delay differential equation of Pantograph type using multiwavelets Galerkin method. Eng. Comput. 35(2), 887–903 (2018)CrossRef Saray, B.N., Manafian, J.: Sparse representation of delay differential equation of Pantograph type using multiwavelets Galerkin method. Eng. Comput. 35(2), 887–903 (2018)CrossRef
35.
Zurück zum Zitat Singh, O.P., Singh, V.K., Pandey, R.K.: A stable numerical inversion of Abel’s integral equation using almost Bernstein operational matrix. J. Quant. Spectrosc. Radiat. Transf. 111, 245–252 (2010)CrossRef Singh, O.P., Singh, V.K., Pandey, R.K.: A stable numerical inversion of Abel’s integral equation using almost Bernstein operational matrix. J. Quant. Spectrosc. Radiat. Transf. 111, 245–252 (2010)CrossRef
36.
Zurück zum Zitat Sumner, D.B.: Abel’s integral equation as a convolution of transform. Proc. Am. Math. Soc. 7(1), 82–86 (1956)MathSciNetMATH Sumner, D.B.: Abel’s integral equation as a convolution of transform. Proc. Am. Math. Soc. 7(1), 82–86 (1956)MathSciNetMATH
38.
Zurück zum Zitat Wazwaz, A.M.: Linear and Nonlinear Integral Equations: Methods and Applications. Higher Education Press and Springer, Berlin (2011)MATHCrossRef Wazwaz, A.M.: Linear and Nonlinear Integral Equations: Methods and Applications. Higher Education Press and Springer, Berlin (2011)MATHCrossRef
Metadaten
Titel
Abel’s integral operator: sparse representation based on multiwavelets
verfasst von
Behzad Nemati Saray
Publikationsdatum
21.01.2021
Verlag
Springer Netherlands
Erschienen in
BIT Numerical Mathematics / Ausgabe 2/2021
Print ISSN: 0006-3835
Elektronische ISSN: 1572-9125
DOI
https://doi.org/10.1007/s10543-020-00832-1

Weitere Artikel der Ausgabe 2/2021

BIT Numerical Mathematics 2/2021 Zur Ausgabe

Premium Partner