Skip to main content

2022 | OriginalPaper | Buchkapitel

Abstraction-Based Segmental Simulation of Chemical Reaction Networks

verfasst von : Martin Helfrich, Milan Češka, Jan Křetínský, Štefan Martiček

Erschienen in: Computational Methods in Systems Biology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Simulating chemical reaction networks is often computationally demanding, in particular due to stiffness. We propose a novel simulation scheme where long runs are not simulated as a whole but assembled from shorter precomputed segments of simulation runs. On the one hand, this speeds up the simulation process to obtain multiple runs since we can reuse the segments. On the other hand, questions on diversity and genuineness of our runs arise. However, we ensure that we generate runs close to their true distribution by generating an appropriate abstraction of the original system and utilizing it in the simulation process. Interestingly, as a by-product, we also obtain a yet more efficient simulation scheme, yielding runs over the system’s abstraction. These provide a very faithful approximation of concrete runs on the desired level of granularity, at a low cost. Our experiments demonstrate the speedups in the simulations while preserving key dynamical as well as quantitative properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
We can handle alternative kinetics including Michaelis-Menten and Hill kinetics.
 
2
We must choose a population abstraction such that applying any of the representative’s possible segments to any corresponding concrete state may only change the enabledness of reactions with the last reaction. Similar constraints are needed if we want to avoid transitions to non-neighboring abstract states. For all presented models, the exponential population abstraction with \(c \le 2\) already has the desired properties.
 
Literatur
1.
Zurück zum Zitat Abate, A., Andriushchenko, R., Češka, M., Kwiatkowska, M.: Adaptive formal approximations of Markov chains. Perform. Eval. 148, 102207 (2021)CrossRef Abate, A., Andriushchenko, R., Češka, M., Kwiatkowska, M.: Adaptive formal approximations of Markov chains. Perform. Eval. 148, 102207 (2021)CrossRef
4.
Zurück zum Zitat Cao, Y., Gillespie, D.T., Petzold, L.R.: The slow-scale stochastic simulation algorithm. J. Chem. Phys. 122(1), 014116 (2005)CrossRef Cao, Y., Gillespie, D.T., Petzold, L.R.: The slow-scale stochastic simulation algorithm. J. Chem. Phys. 122(1), 014116 (2005)CrossRef
5.
Zurück zum Zitat Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-leaping simulation method. J. Chem. Phys. 124(4), 044109 (2006)CrossRef Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-leaping simulation method. J. Chem. Phys. 124(4), 044109 (2006)CrossRef
6.
Zurück zum Zitat Cardelli, L.: Two-domain DNA strand displacement. Math. Struct. Comput. Sci. 23(02), 247–271 (2013)CrossRef Cardelli, L.: Two-domain DNA strand displacement. Math. Struct. Comput. Sci. 23(02), 247–271 (2013)CrossRef
10.
Zurück zum Zitat Chellaboina, V., Bhat, S.P., Haddad, W.M., Bernstein, D.S.: Modeling and analysis of mass-action kinetics. IEEE Control Syst. Mag. 29(4), 60–78 (2009)CrossRef Chellaboina, V., Bhat, S.P., Haddad, W.M., Bernstein, D.S.: Modeling and analysis of mass-action kinetics. IEEE Control Syst. Mag. 29(4), 60–78 (2009)CrossRef
11.
Zurück zum Zitat Desharnais, J., Laviolette, F., Tracol, M.: Approximate analysis of probabilistic processes: logic, simulation and games. In: 2008 Fifth International Conference on Quantitative Evaluation of Systems, pp. 264–273. IEEE (2008) Desharnais, J., Laviolette, F., Tracol, M.: Approximate analysis of probabilistic processes: logic, simulation and games. In: 2008 Fifth International Conference on Quantitative Evaluation of Systems, pp. 264–273. IEEE (2008)
12.
Zurück zum Zitat Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence, vol. 282. Wiley, Hoboken (2009) Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence, vol. 282. Wiley, Hoboken (2009)
13.
Zurück zum Zitat Ferm, L., Lötstedt, P.: Adaptive solution of the master equation in low dimensions. Appl. Numer. Math. 59(1), 187–204 (2009)CrossRef Ferm, L., Lötstedt, P.: Adaptive solution of the master equation in low dimensions. Appl. Numer. Math. 59(1), 187–204 (2009)CrossRef
14.
Zurück zum Zitat Ganguly, A., Altintan, D., Koeppl, H.: Jump-diffusion approximation of stochastic reaction dynamics: error bounds and algorithms. Multisc. Model. Simul. 13(4), 1390–1419 (2015)CrossRef Ganguly, A., Altintan, D., Koeppl, H.: Jump-diffusion approximation of stochastic reaction dynamics: error bounds and algorithms. Multisc. Model. Simul. 13(4), 1390–1419 (2015)CrossRef
15.
Zurück zum Zitat Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRef Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRef
16.
Zurück zum Zitat Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115(4), 1716–1733 (2001)CrossRef Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115(4), 1716–1733 (2001)CrossRef
17.
Zurück zum Zitat Goutsias, J.: Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems. J. Chem. Phys. 122(18), 184102 (2005)CrossRef Goutsias, J.: Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems. J. Chem. Phys. 122(18), 184102 (2005)CrossRef
18.
Zurück zum Zitat Gupta, A., Schwab, C., Khammash, M.: DeepCME: a deep learning framework for computing solution statistics of the chemical master equation. PLoS Comput. Biol. 17(12), e1009623 (2021)CrossRef Gupta, A., Schwab, C., Khammash, M.: DeepCME: a deep learning framework for computing solution statistics of the chemical master equation. PLoS Comput. Biol. 17(12), e1009623 (2021)CrossRef
19.
Zurück zum Zitat Hasenauer, J., Wolf, V., Kazeroonian, A., Theis, F.: Method of conditional moments (MCM) for the chemical master equation. J. Math. Biol. 69, 1–49 (2013) Hasenauer, J., Wolf, V., Kazeroonian, A., Theis, F.: Method of conditional moments (MCM) for the chemical master equation. J. Math. Biol. 69, 1–49 (2013)
20.
Zurück zum Zitat Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilistic model checking of complex biological pathways. Theoret. Comput. Sci. 391(3), 239–257 (2008)CrossRef Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilistic model checking of complex biological pathways. Theoret. Comput. Sci. 391(3), 239–257 (2008)CrossRef
23.
Zurück zum Zitat Henzinger, T.A., Mikeev, L., Mateescu, M., Wolf, V.: Hybrid numerical solution of the chemical master equation. In: CMSB 2010, pp. 55–65. ACM (2010) Henzinger, T.A., Mikeev, L., Mateescu, M., Wolf, V.: Hybrid numerical solution of the chemical master equation. In: CMSB 2010, pp. 55–65. ACM (2010)
24.
Zurück zum Zitat Hepp, B., Gupta, A., Khammash, M.: Adaptive hybrid simulations for multiscale stochastic reaction networks. J. Chem. Phys. 142(3), 034118 (2015)CrossRef Hepp, B., Gupta, A., Khammash, M.: Adaptive hybrid simulations for multiscale stochastic reaction networks. J. Chem. Phys. 142(3), 034118 (2015)CrossRef
25.
Zurück zum Zitat Kwiatkowska, M., Thachuk, C.: Probabilistic model checking for biology. Softw. Syst. Saf. 36, 165 (2014) Kwiatkowska, M., Thachuk, C.: Probabilistic model checking for biology. Softw. Syst. Saf. 36, 165 (2014)
26.
Zurück zum Zitat Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)CrossRef Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)CrossRef
27.
Zurück zum Zitat Lester, C., Yates, C.A., Giles, M.B., Baker, R.E.: An adaptive multi-level simulation algorithm for stochastic biological systems. J. Chem. Phys. 142(2), 01B612_1 (2015) Lester, C., Yates, C.A., Giles, M.B., Baker, R.E.: An adaptive multi-level simulation algorithm for stochastic biological systems. J. Chem. Phys. 142(2), 01B612_1 (2015)
28.
Zurück zum Zitat Maarleveld, T.R., Olivier, B.G., Bruggeman, F.J.: StochPy: a comprehensive, user-friendly tool for simulating stochastic biological processes. PLoS One 8(11), e79345 (2013)CrossRef Maarleveld, T.R., Olivier, B.G., Bruggeman, F.J.: StochPy: a comprehensive, user-friendly tool for simulating stochastic biological processes. PLoS One 8(11), e79345 (2013)CrossRef
29.
Zurück zum Zitat Madsen, C., Myers, C., Roehner, N., Winstead, C., Zhang, Z.: Utilizing stochastic model checking to analyze genetic circuits. In: Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 379–386. IEEE (2012) Madsen, C., Myers, C., Roehner, N., Winstead, C., Zhang, Z.: Utilizing stochastic model checking to analyze genetic circuits. In: Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 379–386. IEEE (2012)
30.
Zurück zum Zitat Mateescu, M., Wolf, V., Didier, F., Henzinger, T.A.: Fast adaptive uniformization of the chemical master equation. IET Syst. Biol. 4(6), 441–452 (2010)CrossRef Mateescu, M., Wolf, V., Didier, F., Henzinger, T.A.: Fast adaptive uniformization of the chemical master equation. IET Syst. Biol. 4(6), 441–452 (2010)CrossRef
31.
Zurück zum Zitat Munsky, B., Khammash, M.: The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124, 044104 (2006)CrossRef Munsky, B., Khammash, M.: The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124, 044104 (2006)CrossRef
32.
Zurück zum Zitat Rao, C.V., Arkin, A.P.: Stochastic chemical kinetics and the quasi-steady-state assumption: application to the Gillespie algorithm. J. Chem. Phys. 118(11), 4999–5010 (2003)CrossRef Rao, C.V., Arkin, A.P.: Stochastic chemical kinetics and the quasi-steady-state assumption: application to the Gillespie algorithm. J. Chem. Phys. 118(11), 4999–5010 (2003)CrossRef
33.
Zurück zum Zitat Salis, H., Kaznessis, Y.: Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. J. Chem. Phys. 122(5), 054103 (2005)CrossRef Salis, H., Kaznessis, Y.: Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. J. Chem. Phys. 122(5), 054103 (2005)CrossRef
34.
Zurück zum Zitat Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Natl. Acad. Sci. U.S.A. 107(12), 5393–5398 (2010)CrossRef Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Natl. Acad. Sci. U.S.A. 107(12), 5393–5398 (2010)CrossRef
35.
Zurück zum Zitat Srivastava, R., You, L., Summers, J., Yin, J.: Stochastic vs. deterministic modeling of intracellular viral kinetics. J. Theor. Biol. 218(3), 309–321 (2002)CrossRef Srivastava, R., You, L., Summers, J., Yin, J.: Stochastic vs. deterministic modeling of intracellular viral kinetics. J. Theor. Biol. 218(3), 309–321 (2002)CrossRef
36.
Zurück zum Zitat Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, vol. 1. Elsevier, Amsterdam (1992) Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, vol. 1. Elsevier, Amsterdam (1992)
37.
Zurück zum Zitat Zhang, J., Watson, L.T., Cao, Y.: Adaptive aggregation method for the chemical master equation. Int. J. Comput. Biol. Drug Des. 2(2), 134–148 (2009)CrossRef Zhang, J., Watson, L.T., Cao, Y.: Adaptive aggregation method for the chemical master equation. Int. J. Comput. Biol. Drug Des. 2(2), 134–148 (2009)CrossRef
Metadaten
Titel
Abstraction-Based Segmental Simulation of Chemical Reaction Networks
verfasst von
Martin Helfrich
Milan Češka
Jan Křetínský
Štefan Martiček
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-031-15034-0_3

Premium Partner