Skip to main content

2021 | OriginalPaper | Buchkapitel

Accelerated Discovery of Thermoelectric Materials Using Machine Learning

verfasst von : Rinkle Juneja, Abhishek K. Singh

Erschienen in: Artificial Intelligence for Materials Science

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Optimized electronic and thermal transport properties are the key requirements for the discovery of efficient thermoelectric materials. Owing to the complex interdependence, simultaneous optimization of these properties is a non-trivial and challenging task, especially if one wants to explore the large available search space of materials. With the advent of statistical high-throughput and machine learning based approaches, several of these challenges for thermoelectrics have been addressed. The goal of this chapter is to highlight these data-assisted efforts towards accelerated development of high-performance thermoelectric materials. We will discuss the contribution of curated databases for high-throughput screening of desired electronic and thermal transport properties. The utilization of these databases will also be described for development of prediction models of transport properties, which has accelerated the discovery of highly efficient thermoelectric materials. Details of commonly used strategies and methods to select a relevant descriptor set for developing the prediction models will be covered. A new approach for selecting descriptors by analyzing the high-throughput property map will be explained. The potential of machine learning methods in relating the unrelated properties will be illustrated by establishing a connection between otherwise independent electronic and thermal transport properties. Further, for designing the highly transferable models for a single target property of interest, we will also cover localized regression based algorithmic development.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wood, C. (1988). Materials for thermoelectric energy conversion. Reports on Progress in Physics, 51, 459.CrossRef Wood, C. (1988). Materials for thermoelectric energy conversion. Reports on Progress in Physics, 51, 459.CrossRef
2.
Zurück zum Zitat Mahan, G., & Sofo, J. (1996). The best thermoelectric. Proceedings of the National Academy of Sciences of the United States of America, 93, 7436–7439. Mahan, G., & Sofo, J. (1996). The best thermoelectric. Proceedings of the National Academy of Sciences of the United States of America, 93, 7436–7439.
3.
Zurück zum Zitat Mahan, G. (1997). Good thermoelectrics. Solid State Physics, 51, 81–157.CrossRef Mahan, G. (1997). Good thermoelectrics. Solid State Physics, 51, 81–157.CrossRef
4.
Zurück zum Zitat DiSalvo, F. J. (1999). Thermoelectric cooling and power generation. Science, 285, 703–706.CrossRef DiSalvo, F. J. (1999). Thermoelectric cooling and power generation. Science, 285, 703–706.CrossRef
5.
Zurück zum Zitat Tritt, T. M., & Subramanian, M. (2006). Thermoelectric materials, phenomena, and applications: A bird’s eye view. MRS Bulletin, 31, 188–198.CrossRef Tritt, T. M., & Subramanian, M. (2006). Thermoelectric materials, phenomena, and applications: A bird’s eye view. MRS Bulletin, 31, 188–198.CrossRef
6.
Zurück zum Zitat Bell, L. E. (2008). Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 321, 1457–1461.CrossRef Bell, L. E. (2008). Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 321, 1457–1461.CrossRef
7.
Zurück zum Zitat Snyder, G. J., & Toberer, E. S. (2008). Complex thermoelectric materials. Nature Materials, 7, 105–114.CrossRef Snyder, G. J., & Toberer, E. S. (2008). Complex thermoelectric materials. Nature Materials, 7, 105–114.CrossRef
8.
Zurück zum Zitat Dehkordi, A. M., Zebarjadi, M., He, J., & Tritt, T. M. (2015). Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials. Materials Science and Engineering R: Reports, 97, 1–22.CrossRef Dehkordi, A. M., Zebarjadi, M., He, J., & Tritt, T. M. (2015). Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials. Materials Science and Engineering R: Reports, 97, 1–22.CrossRef
9.
Zurück zum Zitat Juneja, R., Pandey, T., & Singh, A. K. (2017). High thermoelectric performance in n-doped siliconbased chalcogenide Si2Te3. Chemistry of Materials, 29, 3723–3730.CrossRef Juneja, R., Pandey, T., & Singh, A. K. (2017). High thermoelectric performance in n-doped siliconbased chalcogenide Si2Te3. Chemistry of Materials, 29, 3723–3730.CrossRef
10.
Zurück zum Zitat Xing, G., Sun, J., Li, Y., Fan, X., Zheng, W., & Singh, D. J. (2017). Electronic fitness function for screening semiconductors as thermoelectric materials. Physical Review Materials, 1, 065405.CrossRef Xing, G., Sun, J., Li, Y., Fan, X., Zheng, W., & Singh, D. J. (2017). Electronic fitness function for screening semiconductors as thermoelectric materials. Physical Review Materials, 1, 065405.CrossRef
11.
Zurück zum Zitat Mukherjee, M., Yumnam, G., & Singh, A. K. (2018). High thermoelectric figure of merit via tunable valley convergence coupled low thermal conductivity in AIIBIV C2V chalcopyrites. The Journal of Physical Chemistry C, 122, 29150–29157.CrossRef Mukherjee, M., Yumnam, G., & Singh, A. K. (2018). High thermoelectric figure of merit via tunable valley convergence coupled low thermal conductivity in AIIBIV C2V chalcopyrites. The Journal of Physical Chemistry C, 122, 29150–29157.CrossRef
12.
Zurück zum Zitat Christensen, M., Abrahamsen, A. B., Christensen, N. B., Juranyi, F., Andersen, N. H., Lefmann, K., Andreasson, J., Bahl, C. R., & Iversen, B. B. (2008). Avoided crossing of rattler modes in thermoelectric materials. Nature Materials, 7, 811–815.CrossRef Christensen, M., Abrahamsen, A. B., Christensen, N. B., Juranyi, F., Andersen, N. H., Lefmann, K., Andreasson, J., Bahl, C. R., & Iversen, B. B. (2008). Avoided crossing of rattler modes in thermoelectric materials. Nature Materials, 7, 811–815.CrossRef
13.
Zurück zum Zitat Nolas, G., Cohn, J., & Slack, G. (1998). Effect of partial void filling on the lattice thermal conductivity of skutterudites. Physical Review B, 58, 164.CrossRef Nolas, G., Cohn, J., & Slack, G. (1998). Effect of partial void filling on the lattice thermal conductivity of skutterudites. Physical Review B, 58, 164.CrossRef
14.
Zurück zum Zitat Juneja, R., & Singh, A. K. (2019). Rattling-induced ultralow thermal conductivity leading to exceptional thermoelectric performance in AgIn5S8. ACS Applied Materials & Interfaces, 11, 33894–33900.CrossRef Juneja, R., & Singh, A. K. (2019). Rattling-induced ultralow thermal conductivity leading to exceptional thermoelectric performance in AgIn5S8. ACS Applied Materials & Interfaces, 11, 33894–33900.CrossRef
15.
Zurück zum Zitat Meng, et al. (2019). Thermal conductivity enhancement in MoS2 under extreme strain. Physical Review Letters, 122, 155901. Meng, et al. (2019). Thermal conductivity enhancement in MoS2 under extreme strain. Physical Review Letters, 122, 155901.
16.
Zurück zum Zitat Lee, S., Esfarjani, K., Luo, T., Zhou, J., Tian, Z., & Chen, G. (2014). Resonant bonding leads to low lattice thermal conductivity. Nature Communications, 5, 3525.CrossRef Lee, S., Esfarjani, K., Luo, T., Zhou, J., Tian, Z., & Chen, G. (2014). Resonant bonding leads to low lattice thermal conductivity. Nature Communications, 5, 3525.CrossRef
17.
Zurück zum Zitat Chen, Z., Ge, B., Li, W., Lin, S., Shen, J., Chang, Y., Hanus, R., Snyder, G. J., & Pei, Y. (2017). Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics. Nature Communications, 8, 1–8. Chen, Z., Ge, B., Li, W., Lin, S., Shen, J., Chang, Y., Hanus, R., Snyder, G. J., & Pei, Y. (2017). Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics. Nature Communications, 8, 1–8.
18.
Zurück zum Zitat Biswas, K., He, J., Blum, I. D., Wu, C.-I., Hogan, T. P., Seidman, D. N., Dravid, V. P., & Kanatzidis, M. G. (2012). High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 489, 414–418.CrossRef Biswas, K., He, J., Blum, I. D., Wu, C.-I., Hogan, T. P., Seidman, D. N., Dravid, V. P., & Kanatzidis, M. G. (2012). High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 489, 414–418.CrossRef
19.
Zurück zum Zitat Wei, et al. (2020). Thermodynamic routes to ultralow thermal conductivity and high thermoelectric performance. Advanced Materials, 32, 1906457. Wei, et al. (2020). Thermodynamic routes to ultralow thermal conductivity and high thermoelectric performance. Advanced Materials, 32, 1906457.
20.
Zurück zum Zitat LeSar, R. (2009). Materials informatics: An emerging technology for materials development. Statistical Analysis and Data Mining, 1, 372–374.CrossRef LeSar, R. (2009). Materials informatics: An emerging technology for materials development. Statistical Analysis and Data Mining, 1, 372–374.CrossRef
21.
Zurück zum Zitat Curtarolo, S., Hart, G. L., Nardelli, M. B., Mingo, N., Sanvito, S., & Levy, O. (2013). The high-throughput highway to computational materials design. Nature Materials, 12, 191.CrossRef Curtarolo, S., Hart, G. L., Nardelli, M. B., Mingo, N., Sanvito, S., & Levy, O. (2013). The high-throughput highway to computational materials design. Nature Materials, 12, 191.CrossRef
22.
Zurück zum Zitat Mueller, T., Kusne, A. G., & Ramprasad, R. (2016). Machine learning in materials science: Recent progress and emerging applications. Reviews in Computational Chemistry, 29, 186–273. Mueller, T., Kusne, A. G., & Ramprasad, R. (2016). Machine learning in materials science: Recent progress and emerging applications. Reviews in Computational Chemistry, 29, 186–273.
23.
Zurück zum Zitat Murphy, K. P. (2012). Machine learning: A probabilistic perspective. Cambridge, MA: Massachusetts Institute of Technology Press. Murphy, K. P. (2012). Machine learning: A probabilistic perspective. Cambridge, MA: Massachusetts Institute of Technology Press.
24.
Zurück zum Zitat Pilania, G., Wang, C., Jiang, X., Rajasekaran, S., & Ramprasad, R. (2013). Accelerating materials property predictions using machine learning. Scientific Reports, 3, 2810.CrossRef Pilania, G., Wang, C., Jiang, X., Rajasekaran, S., & Ramprasad, R. (2013). Accelerating materials property predictions using machine learning. Scientific Reports, 3, 2810.CrossRef
25.
Zurück zum Zitat Seko, A., Maekawa, T., Tsuda, K., & Tanaka, I. (2014). Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single- and binary-component solids. Physical Review B, 89, 054303.CrossRef Seko, A., Maekawa, T., Tsuda, K., & Tanaka, I. (2014). Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single- and binary-component solids. Physical Review B, 89, 054303.CrossRef
26.
Zurück zum Zitat Seko, A., Takahashi, A., & Tanaka, I. (2014). Sparse representation for a potential energy surface. Physical Review B, 90, 024101.CrossRef Seko, A., Takahashi, A., & Tanaka, I. (2014). Sparse representation for a potential energy surface. Physical Review B, 90, 024101.CrossRef
27.
Zurück zum Zitat Xue, D., Balachandran, P. V., Hogden, J., Theiler, J., Xue, D., & Lookman, T. (2016). Accelerated search for materials with targeted properties by adaptive design. Nature Communications, 7, 11241.CrossRef Xue, D., Balachandran, P. V., Hogden, J., Theiler, J., Xue, D., & Lookman, T. (2016). Accelerated search for materials with targeted properties by adaptive design. Nature Communications, 7, 11241.CrossRef
28.
Zurück zum Zitat Kim, C., Pilania, G., & Ramprasad, R. (2016). From organized high-throughput data to phenomenological theory using machine learning: The example of dielectric breakdown. Chemistry of Materials, 28, 1304–1311.CrossRef Kim, C., Pilania, G., & Ramprasad, R. (2016). From organized high-throughput data to phenomenological theory using machine learning: The example of dielectric breakdown. Chemistry of Materials, 28, 1304–1311.CrossRef
29.
Zurück zum Zitat Pilania, G., Mannodi-Kanakkithodi, A., Uberuaga, B., Ramprasad, R., Gubernatis, J., & Lookman, T. (2016). Machine learning bandgaps of double perovskites. Scientific Reports, 6, 19375.CrossRef Pilania, G., Mannodi-Kanakkithodi, A., Uberuaga, B., Ramprasad, R., Gubernatis, J., & Lookman, T. (2016). Machine learning bandgaps of double perovskites. Scientific Reports, 6, 19375.CrossRef
30.
Zurück zum Zitat Rajan, A. C., Mishra, A., Satsangi, S., Vaish, R., Mizuseki, H., Lee, K.-R., & Singh, A. K. (2018). Machine-learning-assisted accurate band gap predictions of functionalized MXene. Chemistry of Materials, 30, 4031–4038.CrossRef Rajan, A. C., Mishra, A., Satsangi, S., Vaish, R., Mizuseki, H., Lee, K.-R., & Singh, A. K. (2018). Machine-learning-assisted accurate band gap predictions of functionalized MXene. Chemistry of Materials, 30, 4031–4038.CrossRef
31.
Zurück zum Zitat Mishra, A., Satsangi, S., Rajan, A. C., Mizuseki, H., Lee, K.-R., & Singh, A. K. (2019). Accelerated data-driven accurate positioning of the band edges of MXenes. The Journal of Physical Chemistry Letters, 10, 780–785.CrossRef Mishra, A., Satsangi, S., Rajan, A. C., Mizuseki, H., Lee, K.-R., & Singh, A. K. (2019). Accelerated data-driven accurate positioning of the band edges of MXenes. The Journal of Physical Chemistry Letters, 10, 780–785.CrossRef
32.
Zurück zum Zitat Gaultois, M. W., Oliynyk, A. O., Mar, A., Sparks, T. D., Mulholland, G. J., & Meredig, B. (2016). Perspective: Web-based machine learning models for real-time screening of thermoelectric materials properties. APL Materials, 4, 053213.CrossRef Gaultois, M. W., Oliynyk, A. O., Mar, A., Sparks, T. D., Mulholland, G. J., & Meredig, B. (2016). Perspective: Web-based machine learning models for real-time screening of thermoelectric materials properties. APL Materials, 4, 053213.CrossRef
33.
Zurück zum Zitat Gorai, P., Gao, D., Ortiz, B., Miller, S., Barnett, S. A., Mason, T., Lv, Q., Stevanović, V., & Toberer, E. S. (2016). TE design lab: A virtual laboratory for thermoelectric material design. Computational Materials Science, 112, 368–376.CrossRef Gorai, P., Gao, D., Ortiz, B., Miller, S., Barnett, S. A., Mason, T., Lv, Q., Stevanović, V., & Toberer, E. S. (2016). TE design lab: A virtual laboratory for thermoelectric material design. Computational Materials Science, 112, 368–376.CrossRef
34.
Zurück zum Zitat Toher, C., Plata, J. J., Levy, O., De Jong, M., Asta, M., Nardelli, M. B., & Curtarolo, S. (2014). High-throughput computational screening of thermal conductivity, debye temperature, and Grüneisen parameter using a quasiharmonic debye model. Physical Review B, 90, 174107.CrossRef Toher, C., Plata, J. J., Levy, O., De Jong, M., Asta, M., Nardelli, M. B., & Curtarolo, S. (2014). High-throughput computational screening of thermal conductivity, debye temperature, and Grüneisen parameter using a quasiharmonic debye model. Physical Review B, 90, 174107.CrossRef
35.
Zurück zum Zitat Toher, et al. (2017). Combining the AFLOW GIBBS and elastic libraries to efficiently and robustly screen thermomechanical properties of solids. Physical Review Materials, 1, 015401. Toher, et al. (2017). Combining the AFLOW GIBBS and elastic libraries to efficiently and robustly screen thermomechanical properties of solids. Physical Review Materials, 1, 015401.
36.
Zurück zum Zitat Urban, J. J., Menon, A. K., Tian, Z., Jain, A., & Hippalgaonkar, K. (2019). New horizons in thermo-24 electric materials: Correlated electrons, organic transport, machine learning, and more. Journal of Applied Physics, 125, 180902.CrossRef Urban, J. J., Menon, A. K., Tian, Z., Jain, A., & Hippalgaonkar, K. (2019). New horizons in thermo-24 electric materials: Correlated electrons, organic transport, machine learning, and more. Journal of Applied Physics, 125, 180902.CrossRef
37.
Zurück zum Zitat Wang, T., Zhang, C., Snoussi, H., & Zhang, G. (2020). Machine learning approaches for thermoelectric materials research. Advanced Functional Materials, 30, 1906041.CrossRef Wang, T., Zhang, C., Snoussi, H., & Zhang, G. (2020). Machine learning approaches for thermoelectric materials research. Advanced Functional Materials, 30, 1906041.CrossRef
38.
Zurück zum Zitat Madsen, G. K. (2006). Automated search for new thermoelectric materials: The case of LiZnSb. Journal of the American Chemical Society, 128, 12140–12146.CrossRef Madsen, G. K. (2006). Automated search for new thermoelectric materials: The case of LiZnSb. Journal of the American Chemical Society, 128, 12140–12146.CrossRef
39.
Zurück zum Zitat Wang, S., Wang, Z., Setyawan, W., Mingo, N., & Curtarolo, S. (2011). Assessing the thermoelectric properties of sintered compounds via high-throughput ab-initio calculations. Physical Review X, 1, 021012.CrossRef Wang, S., Wang, Z., Setyawan, W., Mingo, N., & Curtarolo, S. (2011). Assessing the thermoelectric properties of sintered compounds via high-throughput ab-initio calculations. Physical Review X, 1, 021012.CrossRef
40.
Zurück zum Zitat Gaultois, M. W., Sparks, T. D., Borg, C. K., Seshadri, R., Bonificio, W. D., & Clarke, D. R. (2013). Data-driven review of thermoelectric materials: Performance and resource considerations. Chemistry of Materials, 25, 2911–2920.CrossRef Gaultois, M. W., Sparks, T. D., Borg, C. K., Seshadri, R., Bonificio, W. D., & Clarke, D. R. (2013). Data-driven review of thermoelectric materials: Performance and resource considerations. Chemistry of Materials, 25, 2911–2920.CrossRef
41.
Zurück zum Zitat Carrete, J., Mingo, N., Wang, S., & Curtarolo, S. (2014). Nanograined half-heusler semiconductors as advanced thermoelectrics: An ab initio high-throughput statistical study. Advanced Functional Materials, 24, 7427–7432.CrossRef Carrete, J., Mingo, N., Wang, S., & Curtarolo, S. (2014). Nanograined half-heusler semiconductors as advanced thermoelectrics: An ab initio high-throughput statistical study. Advanced Functional Materials, 24, 7427–7432.CrossRef
42.
Zurück zum Zitat Carrete, J., Li, W., Mingo, N., Wang, S., & Curtarolo, S. (2014). Finding unprecedentedly low-thermal-conductivity half-heusler semiconductors via high-throughput materials modeling. Physical Review X, 4, 011019.CrossRef Carrete, J., Li, W., Mingo, N., Wang, S., & Curtarolo, S. (2014). Finding unprecedentedly low-thermal-conductivity half-heusler semiconductors via high-throughput materials modeling. Physical Review X, 4, 011019.CrossRef
43.
Zurück zum Zitat Chen, et al. (2016). Understanding thermoelectric properties from high-throughput calculations: Trends, insights, and comparisons with experiment. Journal of Materials Chemistry C, 4, 4414–4426. Chen, et al. (2016). Understanding thermoelectric properties from high-throughput calculations: Trends, insights, and comparisons with experiment. Journal of Materials Chemistry C, 4, 4414–4426.
44.
Zurück zum Zitat Tabib, M. V., Løvvik, O. M., Johannessen, K., Rasheed, A., Sagvolden, E., & Rustad, A. M. (2018). Discovering thermoelectric materials using machine learning: Insights and challenges. In International Conference on Artificial Neural Networks (pp. 392–401). Tabib, M. V., Løvvik, O. M., Johannessen, K., Rasheed, A., Sagvolden, E., & Rustad, A. M. (2018). Discovering thermoelectric materials using machine learning: Insights and challenges. In International Conference on Artificial Neural Networks (pp. 392–401).
45.
Zurück zum Zitat Iwasaki, et al. (2019). Machine-learning guided discovery of a new thermoelectric material. Scientific Reports, 9, 2751. Iwasaki, et al. (2019). Machine-learning guided discovery of a new thermoelectric material. Scientific Reports, 9, 2751.
46.
Zurück zum Zitat Suwardi, A., Bash, D., Ng, H. K., Gomez, J. R., Repaka, D. M., Kumar, P., & Hippalgaonkar, K. (2019). Inertial effective mass as an effective descriptor for thermoelectrics via datadriven evaluation. Journal of Materials Chemistry A, 7, 23762–23769.CrossRef Suwardi, A., Bash, D., Ng, H. K., Gomez, J. R., Repaka, D. M., Kumar, P., & Hippalgaonkar, K. (2019). Inertial effective mass as an effective descriptor for thermoelectrics via datadriven evaluation. Journal of Materials Chemistry A, 7, 23762–23769.CrossRef
47.
Zurück zum Zitat Juneja, R., Yumnam, G., Satsangi, S., & Singh, A. K. (2019). Coupling high-throughput property map to machine learning for predicting lattice thermal conductivity. Chemistry of Materials, 31, 5145–5151.CrossRef Juneja, R., Yumnam, G., Satsangi, S., & Singh, A. K. (2019). Coupling high-throughput property map to machine learning for predicting lattice thermal conductivity. Chemistry of Materials, 31, 5145–5151.CrossRef
48.
Zurück zum Zitat Juneja, R., & Singh, A. K. (2020). Unraveling the role of bonding chemistry in connecting electronic and thermal transport by machine learning. Journal of Materials Chemistry A, 8, 8716–8721.CrossRef Juneja, R., & Singh, A. K. (2020). Unraveling the role of bonding chemistry in connecting electronic and thermal transport by machine learning. Journal of Materials Chemistry A, 8, 8716–8721.CrossRef
49.
Zurück zum Zitat Mukherjee, M., Satsangi, S., & Singh, A. K. (2020). A statistical approach for the rapid prediction of electron relaxation time using elemental representatives. Chemistry of Materials, 32, 6507–6514.CrossRef Mukherjee, M., Satsangi, S., & Singh, A. K. (2020). A statistical approach for the rapid prediction of electron relaxation time using elemental representatives. Chemistry of Materials, 32, 6507–6514.CrossRef
50.
Zurück zum Zitat Seko, A., Togo, A., Hayashi, H., Tsuda, K., Chaput, L., & Tanaka, I. (2015). Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and Bayesian optimization. Physical Review Letters, 115, 205901.CrossRef Seko, A., Togo, A., Hayashi, H., Tsuda, K., Chaput, L., & Tanaka, I. (2015). Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and Bayesian optimization. Physical Review Letters, 115, 205901.CrossRef
51.
Zurück zum Zitat Seko, A., Hayashi, H., Nakayama, K., Takahashi, A., & Tanaka, I. (2017). Representation of compounds for machine-learning prediction of physical properties. Physical Review B, 95, 144110.CrossRef Seko, A., Hayashi, H., Nakayama, K., Takahashi, A., & Tanaka, I. (2017). Representation of compounds for machine-learning prediction of physical properties. Physical Review B, 95, 144110.CrossRef
52.
Zurück zum Zitat Juneja, R., & Singh, A. K. (2020). Guided patchwork kriging to develop highly transferable thermal conductivity prediction models. Journal of Physics: Materials, 3, 024006. Juneja, R., & Singh, A. K. (2020). Guided patchwork kriging to develop highly transferable thermal conductivity prediction models. Journal of Physics: Materials, 3, 024006.
53.
Zurück zum Zitat Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140, A1133.CrossRef Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140, A1133.CrossRef
54.
Zurück zum Zitat Sham, L., & Schlüter, M. (1983). Density-functional theory of the energy gap. Physical Review Letters, 51, 1888.CrossRef Sham, L., & Schlüter, M. (1983). Density-functional theory of the energy gap. Physical Review Letters, 51, 1888.CrossRef
55.
Zurück zum Zitat Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54, 11169.CrossRef Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54, 11169.CrossRef
56.
Zurück zum Zitat Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6, 15–50.CrossRef Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6, 15–50.CrossRef
57.
Zurück zum Zitat Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3865.CrossRef Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3865.CrossRef
58.
Zurück zum Zitat Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50, 17953.CrossRef Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50, 17953.CrossRef
59.
Zurück zum Zitat Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59, 1758.CrossRef Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59, 1758.CrossRef
60.
Zurück zum Zitat Hedin, L. (1965). New method for calculating the one-particle green’s function with application to the electron-gas problem. Physical Review, 139, A796.CrossRef Hedin, L. (1965). New method for calculating the one-particle green’s function with application to the electron-gas problem. Physical Review, 139, A796.CrossRef
61.
Zurück zum Zitat Blaha, P., Schwarz, K., Madsen, G. K., Kvasnicka, D., Luitz, J., Laskowsji, R., Tran, F., & Marks, L. (2001). An augmented plane wave plus local orbitals program for calculating crystal properties, Techn. Universitat Wien, Austria. Blaha, P., Schwarz, K., Madsen, G. K., Kvasnicka, D., Luitz, J., Laskowsji, R., Tran, F., & Marks, L. (2001). An augmented plane wave plus local orbitals program for calculating crystal properties, Techn. Universitat Wien, Austria.
62.
Zurück zum Zitat Ziman, J. M. (1972). Principles of the theory of solids. Cambridge: Cambridge University Press.CrossRef Ziman, J. M. (1972). Principles of the theory of solids. Cambridge: Cambridge University Press.CrossRef
63.
Zurück zum Zitat Madsen, G. K., & Singh, D. J. (2006). BoltzTraP. A code for calculating band-structure dependent quantities. Computer Physics Communications, 175, 67–71.CrossRef Madsen, G. K., & Singh, D. J. (2006). BoltzTraP. A code for calculating band-structure dependent quantities. Computer Physics Communications, 175, 67–71.CrossRef
64.
Zurück zum Zitat Bardeen, J., & Shockley, W. (1950). Deformation potentials and mobilities in non-polar crystals. Physical Review, 80, 72.CrossRef Bardeen, J., & Shockley, W. (1950). Deformation potentials and mobilities in non-polar crystals. Physical Review, 80, 72.CrossRef
65.
Zurück zum Zitat Feynman, R. P. (1939). Forces in molecules. Physical Review, 56, 340.CrossRef Feynman, R. P. (1939). Forces in molecules. Physical Review, 56, 340.CrossRef
66.
Zurück zum Zitat Baroni, S., De Gironcoli, S., Dal Corso, A., & Giannozzi, P. (2001). Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 73, 515.CrossRef Baroni, S., De Gironcoli, S., Dal Corso, A., & Giannozzi, P. (2001). Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 73, 515.CrossRef
67.
Zurück zum Zitat Togo, A., & Tanaka, I. (2015). First principles phonon calculations in materials science. Scripta Materialia, 108, 1–5.CrossRef Togo, A., & Tanaka, I. (2015). First principles phonon calculations in materials science. Scripta Materialia, 108, 1–5.CrossRef
68.
Zurück zum Zitat Li, W., Carrete, J., Katcho, N. A., & Mingo, N. (2014). ShengBTE: A solver of the Boltzmann transport equation for phonons. Computer Physics Communications, 185, 1747–1758.CrossRef Li, W., Carrete, J., Katcho, N. A., & Mingo, N. (2014). ShengBTE: A solver of the Boltzmann transport equation for phonons. Computer Physics Communications, 185, 1747–1758.CrossRef
69.
Zurück zum Zitat Chaput, L., Togo, A., Tanaka, I., & Hug, G. (2013). Direct solution to the linearized phonon Boltzmann equation. Physical Review Letters, 110, 265506.CrossRef Chaput, L., Togo, A., Tanaka, I., & Hug, G. (2013). Direct solution to the linearized phonon Boltzmann equation. Physical Review Letters, 110, 265506.CrossRef
70.
Zurück zum Zitat Togo, A., Chaput, L., & Tanaka, I. (2015). Distributions of phonon lifetimes in Brillouin zones. Physical Review B, 91, 094306.CrossRef Togo, A., Chaput, L., & Tanaka, I. (2015). Distributions of phonon lifetimes in Brillouin zones. Physical Review B, 91, 094306.CrossRef
71.
Zurück zum Zitat Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Springer series in statistics, Vol. 1). New York: Springer. Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Springer series in statistics, Vol. 1). New York: Springer.
72.
Zurück zum Zitat Himanen, L., Geurts, A., Foster, A. S., & Rinke, P. (2019). Data-driven materials science: Status, challenges, and perspectives. Advanced Science, 6, 1900808.CrossRef Himanen, L., Geurts, A., Foster, A. S., & Rinke, P. (2019). Data-driven materials science: Status, challenges, and perspectives. Advanced Science, 6, 1900808.CrossRef
73.
Zurück zum Zitat Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., & Persson, K. A. (2013). The materials project: A materials genome approach to accelerating materials innovation. APL Materials, 1, 011002.CrossRef Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., & Persson, K. A. (2013). The materials project: A materials genome approach to accelerating materials innovation. APL Materials, 1, 011002.CrossRef
74.
Zurück zum Zitat Kirklin, S., Saal, J. E., Meredig, B., Thompson, A., Doak, J. W., Aykol, M., Rühl, S., & Wolverton, C. (2015). The open quantum materials database (OQMD): Assessing the accuracy of DFT formation energies. Npj Computational Materials, 1, 15010.CrossRef Kirklin, S., Saal, J. E., Meredig, B., Thompson, A., Doak, J. W., Aykol, M., Rühl, S., & Wolverton, C. (2015). The open quantum materials database (OQMD): Assessing the accuracy of DFT formation energies. Npj Computational Materials, 1, 15010.CrossRef
75.
Zurück zum Zitat Curtarolo, et al. (2012). AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio Calculations. Computational Materials Science, 58, 227–235. Curtarolo, et al. (2012). AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio Calculations. Computational Materials Science, 58, 227–235.
76.
Zurück zum Zitat Draxl, C., & Scheffler, M. (2018). NOMAD: The FAIR concept for big data-driven materials science. MRS Bulletin, 43, 676–682.CrossRef Draxl, C., & Scheffler, M. (2018). NOMAD: The FAIR concept for big data-driven materials science. MRS Bulletin, 43, 676–682.CrossRef
77.
Zurück zum Zitat Huan, T. D., Mannodi-Kanakkithodi, A., Kim, C., Sharma, V., Pilania, G., & Ramprasad, R. (2016). A polymer dataset for accelerated property prediction and design. Scientific Data, 3, 160012.CrossRef Huan, T. D., Mannodi-Kanakkithodi, A., Kim, C., Sharma, V., Pilania, G., & Ramprasad, R. (2016). A polymer dataset for accelerated property prediction and design. Scientific Data, 3, 160012.CrossRef
78.
Zurück zum Zitat Choudhary, K., Kalish, I., Beams, R., & Tavazza, F. (2017). High-throughput identification and characterization of two-dimensional materials using density functional theory. Scientific Reports, 7, 5179.CrossRef Choudhary, K., Kalish, I., Beams, R., & Tavazza, F. (2017). High-throughput identification and characterization of two-dimensional materials using density functional theory. Scientific Reports, 7, 5179.CrossRef
79.
Zurück zum Zitat Ghiringhelli, L. M., Vybiral, J., Levchenko, S. V., Draxl, C., & Scheffler, M. (2015). Big data of materials science: Critical role of the descriptor. Physical Review Letters, 114, 105503.CrossRef Ghiringhelli, L. M., Vybiral, J., Levchenko, S. V., Draxl, C., & Scheffler, M. (2015). Big data of materials science: Critical role of the descriptor. Physical Review Letters, 114, 105503.CrossRef
80.
Zurück zum Zitat Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B, 58, 267–288. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B, 58, 267–288.
81.
Zurück zum Zitat Ouyang, R., Curtarolo, S., Ahmetcik, E., Scheffler, M., & Ghiringhelli, L. M. (2018). SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Physical Review Materials, 2, 083802.CrossRef Ouyang, R., Curtarolo, S., Ahmetcik, E., Scheffler, M., & Ghiringhelli, L. M. (2018). SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Physical Review Materials, 2, 083802.CrossRef
82.
Zurück zum Zitat Jolliffe, I. T. (1986). Principal component analysis (pp. 129–155). New York: Springer. Jolliffe, I. T. (1986). Principal component analysis (pp. 129–155). New York: Springer.
83.
Zurück zum Zitat Miller, et al. (2017). Capturing anharmonicity in a lattice thermal conductivity model for high-throughput predictions. Chemistry of Materials, 29, 2494–2501. Miller, et al. (2017). Capturing anharmonicity in a lattice thermal conductivity model for high-throughput predictions. Chemistry of Materials, 29, 2494–2501.
84.
Zurück zum Zitat Yan, J., Gorai, P., Ortiz, B., Miller, S., Barnett, S. A., Mason, T., Stevanovic, V., & Toberer, E. S. (2015). Material descriptors for predicting thermoelectric performance. Energy & Environmental Science, 8, 983–994.CrossRef Yan, J., Gorai, P., Ortiz, B., Miller, S., Barnett, S. A., Mason, T., Stevanovic, V., & Toberer, E. S. (2015). Material descriptors for predicting thermoelectric performance. Energy & Environmental Science, 8, 983–994.CrossRef
85.
Zurück zum Zitat Hoffmann, R. (1987). How chemistry and physics meet in the solid state. Angewandte Chemie International, 26, 846–878.CrossRef Hoffmann, R. (1987). How chemistry and physics meet in the solid state. Angewandte Chemie International, 26, 846–878.CrossRef
86.
Zurück zum Zitat Rohrer, G. S. (2001). Structure and bonding in crystalline materials. Cambridge: Cambridge University Press.CrossRef Rohrer, G. S. (2001). Structure and bonding in crystalline materials. Cambridge: Cambridge University Press.CrossRef
87.
Zurück zum Zitat Cox, P. A. (1987). The electronic structure and chemistry of solids (Vol. 231). Oxford: Oxford University Press. Cox, P. A. (1987). The electronic structure and chemistry of solids (Vol. 231). Oxford: Oxford University Press.
88.
Zurück zum Zitat Pauling, L. (1960). The nature of the chemical bond (Vol. 260). Ithaca: Cornell University Press. Pauling, L. (1960). The nature of the chemical bond (Vol. 260). Ithaca: Cornell University Press.
89.
Zurück zum Zitat Suchet, J. (1977). Electronegativity, ionicity, and effective atomic charges. Journal of the Electrochemical Society, 124, 30C–35C.CrossRef Suchet, J. (1977). Electronegativity, ionicity, and effective atomic charges. Journal of the Electrochemical Society, 124, 30C–35C.CrossRef
90.
Zurück zum Zitat Spitzer, D. (1970). Lattice thermal conductivity of semiconductors: A chemical bond approach. Journal of Physics and Chemistry of Solids, 31, 19–40.CrossRef Spitzer, D. (1970). Lattice thermal conductivity of semiconductors: A chemical bond approach. Journal of Physics and Chemistry of Solids, 31, 19–40.CrossRef
91.
Zurück zum Zitat Mishra, S., & Ganguli, B. (2013). Effect of p-d hybridization, structural distortion and cation electronegativity on electronic properties of ZnSnX2 (X = P, As, Sb) chalcopyrite semiconductors. Journal of Solid State Chemistry, 200, 279–286.CrossRef Mishra, S., & Ganguli, B. (2013). Effect of p-d hybridization, structural distortion and cation electronegativity on electronic properties of ZnSnX2 (X = P, As, Sb) chalcopyrite semiconductors. Journal of Solid State Chemistry, 200, 279–286.CrossRef
92.
Zurück zum Zitat Yoodee, K., Woolley, J. C., & Sa-Yakanit, V. (1984). Effects of p-d hybridization on the valence band of I-III-VI2 chalcopyrite semiconductors. Physical Review B, 30, 5904.CrossRef Yoodee, K., Woolley, J. C., & Sa-Yakanit, V. (1984). Effects of p-d hybridization on the valence band of I-III-VI2 chalcopyrite semiconductors. Physical Review B, 30, 5904.CrossRef
93.
Zurück zum Zitat Miglio, A., Heinrich, C. P., Tremel, W., Hautier, G., & Zeier, W. G. (2017). Local bonding influence on the band edge and band gap formation in quaternary chalcopyrites. Advanced Science, 4, 1700080.CrossRef Miglio, A., Heinrich, C. P., Tremel, W., Hautier, G., & Zeier, W. G. (2017). Local bonding influence on the band edge and band gap formation in quaternary chalcopyrites. Advanced Science, 4, 1700080.CrossRef
94.
Zurück zum Zitat Juneja, R., Shinde, R., & Singh, A. K. (2018). Pressure-induced topological phase transitions in CdGeSb2 and CdSnSb2. The Journal of Physical Chemistry Letters, 9, 2202–2207.CrossRef Juneja, R., Shinde, R., & Singh, A. K. (2018). Pressure-induced topological phase transitions in CdGeSb2 and CdSnSb2. The Journal of Physical Chemistry Letters, 9, 2202–2207.CrossRef
95.
Zurück zum Zitat Zeier, W. G., Zevalkink, A., Gibbs, Z. M., Hautier, G., Kanatzidis, M. G., & Snyder, G. J. (2016). Thinking like a chemist: Intuition in thermoelectric materials. Angewandte Chemie, 55, 6826–6841.CrossRef Zeier, W. G., Zevalkink, A., Gibbs, Z. M., Hautier, G., Kanatzidis, M. G., & Snyder, G. J. (2016). Thinking like a chemist: Intuition in thermoelectric materials. Angewandte Chemie, 55, 6826–6841.CrossRef
96.
Zurück zum Zitat Dronskowski, R., & Blöchl, P. E. (1993). Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations. The Journal of Physical Chemistry, 97, 8617–8624.CrossRef Dronskowski, R., & Blöchl, P. E. (1993). Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations. The Journal of Physical Chemistry, 97, 8617–8624.CrossRef
97.
Zurück zum Zitat Deringer, V. L., Tchougréeff, A. L., & Dronskowski, R. (2011). Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. The Journal of Physical Chemistry A, 115, 5461–5466.CrossRef Deringer, V. L., Tchougréeff, A. L., & Dronskowski, R. (2011). Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. The Journal of Physical Chemistry A, 115, 5461–5466.CrossRef
98.
Zurück zum Zitat Csató, L., & Opper, M. (2002). Sparse online Gaussian processes. Neural Computation, 14, 641–668.CrossRef Csató, L., & Opper, M. (2002). Sparse online Gaussian processes. Neural Computation, 14, 641–668.CrossRef
99.
Zurück zum Zitat Quiñonero-Candela, J., & Rasmussen, C. E. (2005). A unifying view of sparse approximate Gaussian process regression. Journal of Machine Learning Research, 6, 1939–1959. Quiñonero-Candela, J., & Rasmussen, C. E. (2005). A unifying view of sparse approximate Gaussian process regression. Journal of Machine Learning Research, 6, 1939–1959.
100.
Zurück zum Zitat Snelson, E., & Ghahramani, Z. (2006). Sparse Gaussian processes using pseudo-inputs. In Advances in neural information processing systems (pp. 1257–1264). Cambridge, MA: MIT Press. Snelson, E., & Ghahramani, Z. (2006). Sparse Gaussian processes using pseudo-inputs. In Advances in neural information processing systems (pp. 1257–1264). Cambridge, MA: MIT Press.
101.
Zurück zum Zitat Tresp, V. (2001). Mixtures of Gaussian processes. In Advances in neural information processing systems (pp. 654–660). Cambridge, MA: MIT Press. Tresp, V. (2001). Mixtures of Gaussian processes. In Advances in neural information processing systems (pp. 654–660). Cambridge, MA: MIT Press.
102.
Zurück zum Zitat Rasmussen, C. E., & Ghahramani, Z. (2002). Infinite mixtures of Gaussian process experts. In Advances in neural information processing systems (pp. 881–888). Cambridge, MA: MIT Press. Rasmussen, C. E., & Ghahramani, Z. (2002). Infinite mixtures of Gaussian process experts. In Advances in neural information processing systems (pp. 881–888). Cambridge, MA: MIT Press.
103.
104.
Zurück zum Zitat Gramacy, R. B., & Lee, H. K. H. (2008). Bayesian treed Gaussian process models with an application to computer modeling. Journal of the American Statistical Association, 103, 1119–1130.CrossRef Gramacy, R. B., & Lee, H. K. H. (2008). Bayesian treed Gaussian process models with an application to computer modeling. Journal of the American Statistical Association, 103, 1119–1130.CrossRef
105.
Zurück zum Zitat Tresp, V. (2000). A Bayesian committee machine. Neural Computation, 12, 2719–2741.CrossRef Tresp, V. (2000). A Bayesian committee machine. Neural Computation, 12, 2719–2741.CrossRef
106.
Zurück zum Zitat Das, K., & Srivastava, A. N. (2010). Block-GP: Scalable Gaussian process regression for multimodal data. In 2010 IEEE International Conference on Data Mining (pp. 791–796). Das, K., & Srivastava, A. N. (2010). Block-GP: Scalable Gaussian process regression for multimodal data. In 2010 IEEE International Conference on Data Mining (pp. 791–796).
107.
Zurück zum Zitat Park, C., & Huang, J. Z. (2016). Efficient computation of Gaussian process regression for large spatial data sets by patching local Gaussian processes. Journal of Machine Learning Research, 17, 1–29. Park, C., & Huang, J. Z. (2016). Efficient computation of Gaussian process regression for large spatial data sets by patching local Gaussian processes. Journal of Machine Learning Research, 17, 1–29.
108.
Zurück zum Zitat Park, C., & Apley, D. (2018). Patchwork kriging for large-scale Gaussian process regression. Journal of Machine Learning Research, 19, 269–311. Park, C., & Apley, D. (2018). Patchwork kriging for large-scale Gaussian process regression. Journal of Machine Learning Research, 19, 269–311.
109.
Zurück zum Zitat Zhang, Y., & Ling, C. (2018). A strategy to apply machine learning to small datasets in materials science. Npj Computational Materials, 4, 25.CrossRef Zhang, Y., & Ling, C. (2018). A strategy to apply machine learning to small datasets in materials science. Npj Computational Materials, 4, 25.CrossRef
Metadaten
Titel
Accelerated Discovery of Thermoelectric Materials Using Machine Learning
verfasst von
Rinkle Juneja
Abhishek K. Singh
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-68310-8_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.