Skip to main content

2021 | OriginalPaper | Buchkapitel

Thermal Nanostructure Design by Materials Informatics

verfasst von : Run Hu, Junichiro Shiomi

Erschienen in: Artificial Intelligence for Materials Science

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Tuning thermal transport by nanostructures has garnered increasing attentions as thermal materials with either high or low thermal conductivities are of great use in a wide range of applications like thermal management, thermal barriers, and thermoelectrics. Due to the superhigh degree of freedoms in terms of atom types and structural configurations, traditional searching algorithm may be powerless to find the optimal nanostructures with limited time and computation expenses, and thus the big-data-driven materials informatics (MI), as the fourth paradigm, has emerged and become prevalent. In this chapter, beginning with the brief introduction of the MI algorithms, we emphasize on the progress on MI-based thermal nanostructure designs, ranging from heat conduction through Si/Ge and GaAs/AlAs superlattices, graphene nanoribbons, to thermal emission for radiative cooling, ultranarrow emission, thermophotovoltaic system, and thermal camouflage. The remaining challenges and opportunities in this field are outlined and prospected.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liu, Y., Niu, C., Wang, Z., Gan, Y., Zhu, Y., Sun, S., & Shen, T. (2020). Machine learning in materials genome initiative: A review. Journal of Materials Science & Technology, 57, 113–122.CrossRef Liu, Y., Niu, C., Wang, Z., Gan, Y., Zhu, Y., Sun, S., & Shen, T. (2020). Machine learning in materials genome initiative: A review. Journal of Materials Science & Technology, 57, 113–122.CrossRef
2.
Zurück zum Zitat Ju, S., & Shiomi, J. (2019). Materials informatics for heat transfer: Recent progresses and perspectives. Nanoscale and Microscale Thermophysical Engineering, 23(2), 157–172.CrossRef Ju, S., & Shiomi, J. (2019). Materials informatics for heat transfer: Recent progresses and perspectives. Nanoscale and Microscale Thermophysical Engineering, 23(2), 157–172.CrossRef
3.
Zurück zum Zitat Kim, H., Han, J., & Han, T. Y. (2020). Machine vision-driven automatic recognition of particle size and morphology in SEM images. Nanoscale, 12, 19461.CrossRef Kim, H., Han, J., & Han, T. Y. (2020). Machine vision-driven automatic recognition of particle size and morphology in SEM images. Nanoscale, 12, 19461.CrossRef
4.
Zurück zum Zitat Chen, Y., Tian, Y., Zhou, Y., Fang, D., Ding, X., Sun, J., & Xue, D. (2020). Machine learning assisted multi-objective optimization for materials processing parameters: A case study in Mg alloy. Journal of Alloys and Compounds, 844, 156159.CrossRef Chen, Y., Tian, Y., Zhou, Y., Fang, D., Ding, X., Sun, J., & Xue, D. (2020). Machine learning assisted multi-objective optimization for materials processing parameters: A case study in Mg alloy. Journal of Alloys and Compounds, 844, 156159.CrossRef
5.
Zurück zum Zitat Yamashita, T., Sato, N., Kino, H., Miyake, T., Tsuda, K., & Oguchi, T. (2018). Crystal structure prediction accelerated by Bayesian optimization. Physical Review Materials, 2, 013803.CrossRef Yamashita, T., Sato, N., Kino, H., Miyake, T., Tsuda, K., & Oguchi, T. (2018). Crystal structure prediction accelerated by Bayesian optimization. Physical Review Materials, 2, 013803.CrossRef
6.
Zurück zum Zitat Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., & Persson, K. A. (2013). Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Materials, 1, 011002. CrossRef Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., & Persson, K. A. (2013). Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Materials, 1, 011002. CrossRef
7.
Zurück zum Zitat Curtarolo, S., Setyawan, W., Wang, S., Xue, J., Yang, K., Taylor, R. H., Nelson, L. J., Hart, G. L. W., Sanvito, S., Buongiorno-Nardelli, M., Mingo, N., & Levy, O. (2012). Aflowlib.Org: A distributed materials properties repository from high-throughput ab initio calculations. Computational Materials Science, 58, 227–235.CrossRef Curtarolo, S., Setyawan, W., Wang, S., Xue, J., Yang, K., Taylor, R. H., Nelson, L. J., Hart, G. L. W., Sanvito, S., Buongiorno-Nardelli, M., Mingo, N., & Levy, O. (2012). Aflowlib.Org: A distributed materials properties repository from high-throughput ab initio calculations. Computational Materials Science, 58, 227–235.CrossRef
8.
Zurück zum Zitat Belsky, A., Hellenbrandt, M., Karen, V. L., & Luksch, P. (2002). New developments in the Inorganic Crystal Structure Database (ICSD): Accessibility in support of materials research and design. Acta Crystallographica Section B, 58, 364.CrossRef Belsky, A., Hellenbrandt, M., Karen, V. L., & Luksch, P. (2002). New developments in the Inorganic Crystal Structure Database (ICSD): Accessibility in support of materials research and design. Acta Crystallographica Section B, 58, 364.CrossRef
9.
Zurück zum Zitat Saal, J. E., Kirklin, S., Aykol, M., Meredig, B., & Wolverton, C. (2013). Materials design and discovery with high-throughput density functional theory: The open quantum materials database (oqmd). JOM, 65(11), 1501–1509.CrossRef Saal, J. E., Kirklin, S., Aykol, M., Meredig, B., & Wolverton, C. (2013). Materials design and discovery with high-throughput density functional theory: The open quantum materials database (oqmd). JOM, 65(11), 1501–1509.CrossRef
10.
Zurück zum Zitat Xu, Y., Yamazaki, M., & Villars, P. (2011). Inorganic materials database for exploring the nature of material. Japanese Journal of Applied Physics, 50(11), 11RH02.CrossRef Xu, Y., Yamazaki, M., & Villars, P. (2011). Inorganic materials database for exploring the nature of material. Japanese Journal of Applied Physics, 50(11), 11RH02.CrossRef
11.
Zurück zum Zitat Liu, Y., Hu, C., Huang, J., Sumpter, B. G., & Qiao, R. (2015). Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects. The Journal of Chemical Physics, 142, 244703.CrossRef Liu, Y., Hu, C., Huang, J., Sumpter, B. G., & Qiao, R. (2015). Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects. The Journal of Chemical Physics, 142, 244703.CrossRef
12.
Zurück zum Zitat Merabia, S., & Termentzidis, K. (2014). Thermal boundary conductance across rough interfaces probed by molecular dynamics. Physical Review B, 89(5), 054309.CrossRef Merabia, S., & Termentzidis, K. (2014). Thermal boundary conductance across rough interfaces probed by molecular dynamics. Physical Review B, 89(5), 054309.CrossRef
13.
Zurück zum Zitat Tian, Z., Esfarjani, K., & Chen, G. (2012). Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles study with the Green’s function method. Physical Review B, 86(23), 235304.CrossRef Tian, Z., Esfarjani, K., & Chen, G. (2012). Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles study with the Green’s function method. Physical Review B, 86(23), 235304.CrossRef
14.
Zurück zum Zitat Sakata, M., Hori, T., Oyake, T., Maire, J., Nomura, M., & Shiomi, J. (2015). Tuning thermal conductance across sintered silicon interface by local nanostructures. Nano Energy, 13, 601–608.CrossRef Sakata, M., Hori, T., Oyake, T., Maire, J., Nomura, M., & Shiomi, J. (2015). Tuning thermal conductance across sintered silicon interface by local nanostructures. Nano Energy, 13, 601–608.CrossRef
15.
Zurück zum Zitat Sakata, M., Oyake, T., Maire, J., Nomura, M., Higurashi, E., & Shiom, J. (2015). Thermal conductance of silicon interfaces directly bonded by room-temperature surface activation. Applied Physics Letters, 106, 081603.CrossRef Sakata, M., Oyake, T., Maire, J., Nomura, M., Higurashi, E., & Shiom, J. (2015). Thermal conductance of silicon interfaces directly bonded by room-temperature surface activation. Applied Physics Letters, 106, 081603.CrossRef
16.
Zurück zum Zitat Agrawala, A., & Choudhary, A. (2016). Perspective: Materials informatics and big data: Realization of the “fourth paradigm”of science in materials science. APL Materials, 4, 053208.CrossRef Agrawala, A., & Choudhary, A. (2016). Perspective: Materials informatics and big data: Realization of the “fourth paradigm”of science in materials science. APL Materials, 4, 053208.CrossRef
17.
Zurück zum Zitat Rajan, K. (2012). Materials informatics. Materials Today, 15(11), 470.CrossRef Rajan, K. (2012). Materials informatics. Materials Today, 15(11), 470.CrossRef
18.
Zurück zum Zitat Rajan, K. (2015). Materials informatics: The materials “gene” and big data. Annual Review of Materials Research, 45(1), 153–169.CrossRef Rajan, K. (2015). Materials informatics: The materials “gene” and big data. Annual Review of Materials Research, 45(1), 153–169.CrossRef
19.
Zurück zum Zitat Mueller, T., Hautier, G., Jain, A., & Ceder, G. (2011). Evaluation of tavorite-structured cathode materials for lithium-ion batteries using high-throughput computing. Chemistry of Materials, 23(17), 3854–3862.CrossRef Mueller, T., Hautier, G., Jain, A., & Ceder, G. (2011). Evaluation of tavorite-structured cathode materials for lithium-ion batteries using high-throughput computing. Chemistry of Materials, 23(17), 3854–3862.CrossRef
20.
Zurück zum Zitat Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. B., & Norskov, J. K. (2006). Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Materials, 5(11), 909–913.CrossRef Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. B., & Norskov, J. K. (2006). Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Materials, 5(11), 909–913.CrossRef
21.
Zurück zum Zitat Blundell, T. L., Sibanda, B. L., Montalvao, R. W., Brewerton, S., Chelliah, V., Worth, C. L., Harmer, N. J., Davies, O., & Burke, D. (2006). Structural biology and bioinformatics in drug design: Opportunities and challenges for target identification and lead discovery. Philosophical Transactions of Royal Society: Biological Sciences, 361(1467), 413–423.CrossRef Blundell, T. L., Sibanda, B. L., Montalvao, R. W., Brewerton, S., Chelliah, V., Worth, C. L., Harmer, N. J., Davies, O., & Burke, D. (2006). Structural biology and bioinformatics in drug design: Opportunities and challenges for target identification and lead discovery. Philosophical Transactions of Royal Society: Biological Sciences, 361(1467), 413–423.CrossRef
22.
Zurück zum Zitat Wu, Y., Lazic, P., Hautier, G., Persson, K., & Ceder, G. (2013). First principles high throughput screening of oxynitrides for water-splitting photocatalysts. Energy & Environmental Science, 6(1), 157–168.CrossRef Wu, Y., Lazic, P., Hautier, G., Persson, K., & Ceder, G. (2013). First principles high throughput screening of oxynitrides for water-splitting photocatalysts. Energy & Environmental Science, 6(1), 157–168.CrossRef
23.
Zurück zum Zitat Rahimi, A., & Recht, B. (2007). Advances in neural information processing systems 20 (p. 1177). Vancouver, BC: NIPS. Rahimi, A., & Recht, B. (2007). Advances in neural information processing systems 20 (p. 1177). Vancouver, BC: NIPS.
24.
Zurück zum Zitat Ueno, T., Rhone, T. D., Hou, Z., Mizoguchi, T., & Tsuda, K. (2016). Combo: An efficient Bayesian optimization library for materials science. Materials Discovery, 4, 18–21.CrossRef Ueno, T., Rhone, T. D., Hou, Z., Mizoguchi, T., & Tsuda, K. (2016). Combo: An efficient Bayesian optimization library for materials science. Materials Discovery, 4, 18–21.CrossRef
25.
Zurück zum Zitat Dieb, T. M., Ju, S., Yoshizoe, K., Hou, Z., Shiomi, J., & Tsuda, K. (2017). MDTS: Automatic complex materials design using Monte Carlo tree search. Science and Technology of Advanced Materials, 18(1), 498–503.CrossRef Dieb, T. M., Ju, S., Yoshizoe, K., Hou, Z., Shiomi, J., & Tsuda, K. (2017). MDTS: Automatic complex materials design using Monte Carlo tree search. Science and Technology of Advanced Materials, 18(1), 498–503.CrossRef
26.
Zurück zum Zitat Dieb, T. M., Ju, S., Shiomi, J., & Tsuda, K. (2019). Monte Carlo tree search for materials design and discovery. MRS Communications, 9(02), 532–536.CrossRef Dieb, T. M., Ju, S., Shiomi, J., & Tsuda, K. (2019). Monte Carlo tree search for materials design and discovery. MRS Communications, 9(02), 532–536.CrossRef
27.
Zurück zum Zitat Yamada, H., Liu, C., Wu, S., Koyama, Y., Ju, S., Shiomi, J., Morikawa, J., & Yoshida, R. (2019). Predicting materials properties with little data using shotgun transfer learning. ACS Central Science, 5(10), 1717–1730.CrossRef Yamada, H., Liu, C., Wu, S., Koyama, Y., Ju, S., Shiomi, J., Morikawa, J., & Yoshida, R. (2019). Predicting materials properties with little data using shotgun transfer learning. ACS Central Science, 5(10), 1717–1730.CrossRef
28.
Zurück zum Zitat Ju, S., Shiga, T., Feng, L., Hou, Z., Tsuda, K., & Shiomi, J. (2017). Designing nanostructures for phonon transport via Bayesian optimization. Physical Review X, 7(2), 021024.CrossRef Ju, S., Shiga, T., Feng, L., Hou, Z., Tsuda, K., & Shiomi, J. (2017). Designing nanostructures for phonon transport via Bayesian optimization. Physical Review X, 7(2), 021024.CrossRef
29.
Zurück zum Zitat Hopkins, P. E., Norris, P. M., Tsegaye, M. S., & Ghosh, A. W. (2009). Extracting phonon thermal conductance across atomic junctions: Nonequilibrium Green’s function approach compared to semiclassical methods. Journal of Applied Physics, 106, 063503.CrossRef Hopkins, P. E., Norris, P. M., Tsegaye, M. S., & Ghosh, A. W. (2009). Extracting phonon thermal conductance across atomic junctions: Nonequilibrium Green’s function approach compared to semiclassical methods. Journal of Applied Physics, 106, 063503.CrossRef
30.
Zurück zum Zitat Hyldgaard, P. (2004). Resonant thermal transport in semiconductor barrier structures. Physical Review B, 69(19), 193305.CrossRef Hyldgaard, P. (2004). Resonant thermal transport in semiconductor barrier structures. Physical Review B, 69(19), 193305.CrossRef
31.
Zurück zum Zitat Hu, R., Iwamoto, S., Feng, L., Ju, S., Hu, S., Ohnishi, M., Nagai, N., Hirakawa, K., & Shiomi, J. (2020). Machine-learning-optimized aperiodic superlattice minimizes coherent phonon heat conduction. Physical Review X, 10(2), 021050.CrossRef Hu, R., Iwamoto, S., Feng, L., Ju, S., Hu, S., Ohnishi, M., Nagai, N., Hirakawa, K., & Shiomi, J. (2020). Machine-learning-optimized aperiodic superlattice minimizes coherent phonon heat conduction. Physical Review X, 10(2), 021050.CrossRef
32.
Zurück zum Zitat Yamawaki, M., Ohnishi, M., Ju, S., & Shiomi, J. (2018). Multifunctional structural design of graphene thermoelectrics by Bayesian optimization. Science Advances, 4, eaar4192.CrossRef Yamawaki, M., Ohnishi, M., Ju, S., & Shiomi, J. (2018). Multifunctional structural design of graphene thermoelectrics by Bayesian optimization. Science Advances, 4, eaar4192.CrossRef
33.
Zurück zum Zitat Kalhor, N., Boden, S. A., & Mizuta, H. (2014). Sub-10nm patterning by focused He-ion beam milling for fabrication of downscaled graphene nano devices. Microelectronic Engineering, 114, 70–77.CrossRef Kalhor, N., Boden, S. A., & Mizuta, H. (2014). Sub-10nm patterning by focused He-ion beam milling for fabrication of downscaled graphene nano devices. Microelectronic Engineering, 114, 70–77.CrossRef
34.
Zurück zum Zitat Ito, M., Koizumi, T., Kojima, H., Saito, T., & Nakamura, M. (2017). From materials to device design of a thermoelectric fabric for wearable energy harvesters. Journal of Materials Chemistry A, 5(24), 12068–12072.CrossRef Ito, M., Koizumi, T., Kojima, H., Saito, T., & Nakamura, M. (2017). From materials to device design of a thermoelectric fabric for wearable energy harvesters. Journal of Materials Chemistry A, 5(24), 12068–12072.CrossRef
35.
Zurück zum Zitat Chakraborty, P., Liu, Y., Ma, T., Guo, X., Cao, L., Hu, R., & Wang, Y. (2020). Quenching thermal transport in aperiodic superlattices: A molecular dynamics and machine learning study. ACS Applied Materials & Interfaces, 12(7), 8795–8804.CrossRef Chakraborty, P., Liu, Y., Ma, T., Guo, X., Cao, L., Hu, R., & Wang, Y. (2020). Quenching thermal transport in aperiodic superlattices: A molecular dynamics and machine learning study. ACS Applied Materials & Interfaces, 12(7), 8795–8804.CrossRef
36.
Zurück zum Zitat Shih, Y. C. A., Sadra, K., & Streetman, B. (1994). Random-period superlattice quantum wells. Journal of Vacuum Science & Technology B Microelectronics & Nanometer Structures, 12, 1082–1085.CrossRef Shih, Y. C. A., Sadra, K., & Streetman, B. (1994). Random-period superlattice quantum wells. Journal of Vacuum Science & Technology B Microelectronics & Nanometer Structures, 12, 1082–1085.CrossRef
37.
Zurück zum Zitat Juntunen, T., Vänskä, O., & Tittonen, I. (2019). Anderson localization quenches thermal transport in aperiodic superlattices. Physical Review Letters, 122, 105901.CrossRef Juntunen, T., Vänskä, O., & Tittonen, I. (2019). Anderson localization quenches thermal transport in aperiodic superlattices. Physical Review Letters, 122, 105901.CrossRef
38.
Zurück zum Zitat Haykin, S. (1994). Neural networks: A comprehensive foundation (1st ed.). Upper Saddle River, NJ: Prentice Hall PTR. Haykin, S. (1994). Neural networks: A comprehensive foundation (1st ed.). Upper Saddle River, NJ: Prentice Hall PTR.
39.
Zurück zum Zitat Klambauer, G., Unterthiner, T., Mayr, A., & Hochreiter, S. (2017). In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in neural information processing systems 30 (pp. 971–980). Montreal: Curran Associates. Klambauer, G., Unterthiner, T., Mayr, A., & Hochreiter, S. (2017). In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in neural information processing systems 30 (pp. 971–980). Montreal: Curran Associates.
40.
Zurück zum Zitat Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
41.
Zurück zum Zitat Wang, Y., Vallabhaneni, A., Hu, J., Qiu, B., Chen, Y. P., & Ruan, X. (2014). Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures. Nano Letters, 14, 592–596.CrossRef Wang, Y., Vallabhaneni, A., Hu, J., Qiu, B., Chen, Y. P., & Ruan, X. (2014). Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures. Nano Letters, 14, 592–596.CrossRef
42.
Zurück zum Zitat Luckyanova, M. N., Mendoza, J., Lu, H., Song, B., Huang, S., Zhou, J., Li, M., Dong, Y., Zhou, H., Garlow, J., Wu, L., Kirby, B. J., Grutter, A. J., Puretzky, A. A., Zhu, Y., Dresselhaus, M. S., Gossard, A., & Chen, G. (2018). Phonon localization in heat conduction. Science Advances, 4, eaat9460.CrossRef Luckyanova, M. N., Mendoza, J., Lu, H., Song, B., Huang, S., Zhou, J., Li, M., Dong, Y., Zhou, H., Garlow, J., Wu, L., Kirby, B. J., Grutter, A. J., Puretzky, A. A., Zhu, Y., Dresselhaus, M. S., Gossard, A., & Chen, G. (2018). Phonon localization in heat conduction. Science Advances, 4, eaat9460.CrossRef
43.
Zurück zum Zitat Mendoza, J., & Chen, G. (2016). Anderson localization of thermal phonons leads to a thermal conductivity maximum. Nano Letters, 16, 7616–7620.CrossRef Mendoza, J., & Chen, G. (2016). Anderson localization of thermal phonons leads to a thermal conductivity maximum. Nano Letters, 16, 7616–7620.CrossRef
44.
Zurück zum Zitat Tian, Z. (2019). Anderson localization for better thermoelectrics? ACS Nano, 13, 3750–3753.CrossRef Tian, Z. (2019). Anderson localization for better thermoelectrics? ACS Nano, 13, 3750–3753.CrossRef
45.
Zurück zum Zitat Zhu, L., Raman, A., Wang, K. X., Anoma, M. A., & Fan, S. (2014). Radiative cooling of solar cells. Optica, 1(1), 32.CrossRef Zhu, L., Raman, A., Wang, K. X., Anoma, M. A., & Fan, S. (2014). Radiative cooling of solar cells. Optica, 1(1), 32.CrossRef
46.
Zurück zum Zitat Lu, Y., Chen, Z., Ai, L., Zhang, X., Zhang, J., Li, J., Wang, W., Tan, R., Dai, N., & Song, W. (2017). A universal route to realize radiative cooling and light management in photovoltaic modules. Solar RRL, 1(10), 1700084.CrossRef Lu, Y., Chen, Z., Ai, L., Zhang, X., Zhang, J., Li, J., Wang, W., Tan, R., Dai, N., & Song, W. (2017). A universal route to realize radiative cooling and light management in photovoltaic modules. Solar RRL, 1(10), 1700084.CrossRef
47.
Zurück zum Zitat Mandal, J., Fu, Y., Overvig, A. C., Jia, M., Sun, K., Shi, N. N., Zhou, H., Xiao, X., Yu, N., & Yang, Y. (2018). Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science, 362, 315.CrossRef Mandal, J., Fu, Y., Overvig, A. C., Jia, M., Sun, K., Shi, N. N., Zhou, H., Xiao, X., Yu, N., & Yang, Y. (2018). Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science, 362, 315.CrossRef
48.
Zurück zum Zitat Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E., & Fan, S. (2014). Passive radiative cooling below ambient air temperature under direct sunlight. Nature, 515(7528), 540–544.CrossRef Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E., & Fan, S. (2014). Passive radiative cooling below ambient air temperature under direct sunlight. Nature, 515(7528), 540–544.CrossRef
49.
Zurück zum Zitat Guo, J., Ju, S., & Shiomi, J. (2020). Design of a highly selective radiative cooling structure accelerated by materials informatics. Optics Letters, 45(2), 343.CrossRef Guo, J., Ju, S., & Shiomi, J. (2020). Design of a highly selective radiative cooling structure accelerated by materials informatics. Optics Letters, 45(2), 343.CrossRef
50.
Zurück zum Zitat Wang, L. P., & Zhang, Z. M. (2011). Phonon-mediated magnetic polaritons in the infrared region. Optics Express, 19, A126.CrossRef Wang, L. P., & Zhang, Z. M. (2011). Phonon-mediated magnetic polaritons in the infrared region. Optics Express, 19, A126.CrossRef
51.
Zurück zum Zitat Kitai, K., Guo, J., Ju, S., Tanaka, S., Tsuda, K., Shiomi, J., & Tamura, R. (2020). Designing metamaterials with quantum annealing and factorization machines. Physical Review Research, 2(1), 013319.CrossRef Kitai, K., Guo, J., Ju, S., Tanaka, S., Tsuda, K., Shiomi, J., & Tamura, R. (2020). Designing metamaterials with quantum annealing and factorization machines. Physical Review Research, 2(1), 013319.CrossRef
52.
Zurück zum Zitat Ilic, O., Bermel, P., Chen, G., Joannopoulos, J. D., Celanovic, I., & Soljacic, M. (2016). Tailoring high-temperature radiation and the resurrection of the incandescent source. Nature Nanotechnology, 11(4), 320–324.CrossRef Ilic, O., Bermel, P., Chen, G., Joannopoulos, J. D., Celanovic, I., & Soljacic, M. (2016). Tailoring high-temperature radiation and the resurrection of the incandescent source. Nature Nanotechnology, 11(4), 320–324.CrossRef
53.
Zurück zum Zitat Liu, X. L., Wang, L. P., & Zhang, Z. M. (2013). Wideband tunable omnidirectional infrared absorbers based on doped-silicon nanowire arrays. Journal of Heat Transfer, 135(6), 061602.CrossRef Liu, X. L., Wang, L. P., & Zhang, Z. M. (2013). Wideband tunable omnidirectional infrared absorbers based on doped-silicon nanowire arrays. Journal of Heat Transfer, 135(6), 061602.CrossRef
54.
Zurück zum Zitat Landy, N. I., Bingham, C. M., Tyler, T., Jokerst, N., Smith, D. R., & Padilla, W. J. (2009). Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Physical Review B, 79(12), 125104.CrossRef Landy, N. I., Bingham, C. M., Tyler, T., Jokerst, N., Smith, D. R., & Padilla, W. J. (2009). Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Physical Review B, 79(12), 125104.CrossRef
55.
Zurück zum Zitat Bermel, P., Ghebrebrhan, M., Chan, W., Yeng, Y. X., Araghchini, M., Hamam, R., Marton, C. H., Jensen, K. F., Soljacic, M., Joannopoulos, J. D., Johnson, S. G., & Celanovic, I. (2010). Design and global optimization of high-efficiency thermophotovoltaic systems. Optics Express, 18, A314.CrossRef Bermel, P., Ghebrebrhan, M., Chan, W., Yeng, Y. X., Araghchini, M., Hamam, R., Marton, C. H., Jensen, K. F., Soljacic, M., Joannopoulos, J. D., Johnson, S. G., & Celanovic, I. (2010). Design and global optimization of high-efficiency thermophotovoltaic systems. Optics Express, 18, A314.CrossRef
56.
Zurück zum Zitat Wang, H., Alshehri, H., Su, H., & Wang, L. (2018). Design, fabrication and optical characterizations of large-area lithography-free ultrathin multilayer selective solar coatings with excellent thermal stability in air. Solar Energy Materials and Solar Cells, 174, 445–452.CrossRef Wang, H., Alshehri, H., Su, H., & Wang, L. (2018). Design, fabrication and optical characterizations of large-area lithography-free ultrathin multilayer selective solar coatings with excellent thermal stability in air. Solar Energy Materials and Solar Cells, 174, 445–452.CrossRef
57.
Zurück zum Zitat Yeng, Y. X., Chou, J. B., Rinnerbauer, V., Shen, Y., Kim, S. G., Joannopoulos, J. D., Soljacic, M., & Celanovic, I. (2014). Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals. Optics Express, 22(18), 21711–21718.CrossRef Yeng, Y. X., Chou, J. B., Rinnerbauer, V., Shen, Y., Kim, S. G., Joannopoulos, J. D., Soljacic, M., & Celanovic, I. (2014). Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals. Optics Express, 22(18), 21711–21718.CrossRef
58.
Zurück zum Zitat Aydin, K., Ferry, V. E., Briggs, R. M., & Atwater, H. A. (2011). Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature Communications, 2, 517.CrossRef Aydin, K., Ferry, V. E., Briggs, R. M., & Atwater, H. A. (2011). Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature Communications, 2, 517.CrossRef
59.
Zurück zum Zitat Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., & Padilla, W. J. (2008). Perfect metamaterial absorber. Physical Review Letters, 100(20), 207402.CrossRef Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., & Padilla, W. J. (2008). Perfect metamaterial absorber. Physical Review Letters, 100(20), 207402.CrossRef
60.
Zurück zum Zitat Sakurai, A., Yada, K., Simomura, T., Ju, S., Kashiwagi, M., Okada, H., Nagao, T., Tsuda, K., & Shiomi, J. (2019). Ultranarrow-band wavelength-selective thermal emission with aperiodic multilayered metamaterials designed by Bayesian optimization. ACS Central Science, 5(2), 319–326.CrossRef Sakurai, A., Yada, K., Simomura, T., Ju, S., Kashiwagi, M., Okada, H., Nagao, T., Tsuda, K., & Shiomi, J. (2019). Ultranarrow-band wavelength-selective thermal emission with aperiodic multilayered metamaterials designed by Bayesian optimization. ACS Central Science, 5(2), 319–326.CrossRef
61.
Zurück zum Zitat Joannopoulos, J. D., Villeneuve, P. R., & Fan, S. (1997). Photonic crystals: Putting a new twist on light. Nature, 386, 143.CrossRef Joannopoulos, J. D., Villeneuve, P. R., & Fan, S. (1997). Photonic crystals: Putting a new twist on light. Nature, 386, 143.CrossRef
62.
Zurück zum Zitat Datas, A., & Algora, C. (2013). Global optimization of solar thermophotovoltaic systems. Progress in Photovoltaics Research & Applications, 21, 1040–1055. Datas, A., & Algora, C. (2013). Global optimization of solar thermophotovoltaic systems. Progress in Photovoltaics Research & Applications, 21, 1040–1055.
63.
Zurück zum Zitat Hu, R., Song, J., Liu, Y., Xi, W., Zhao, Y., Yu, X., Cheng, Q., Tao, G., & Luo, X. (2020). Machine learning-optimized Tamm emitter for high-performance thermophotovoltaic system with detailed balance analysis. Nano Energy, 72, 104687.CrossRef Hu, R., Song, J., Liu, Y., Xi, W., Zhao, Y., Yu, X., Cheng, Q., Tao, G., & Luo, X. (2020). Machine learning-optimized Tamm emitter for high-performance thermophotovoltaic system with detailed balance analysis. Nano Energy, 72, 104687.CrossRef
64.
Zurück zum Zitat Kresse, G., & Furthmuller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6, 15.CrossRef Kresse, G., & Furthmuller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6, 15.CrossRef
65.
Zurück zum Zitat Kresse, G., & Furthmuller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54, 11169.CrossRef Kresse, G., & Furthmuller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54, 11169.CrossRef
66.
Zurück zum Zitat Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., De Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., & Wentzcovitch, R. M. (2009). Quantum espresso: A modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., De Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., & Wentzcovitch, R. M. (2009). Quantum espresso: A modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502.
67.
Zurück zum Zitat Tadano, T., Gohda, Y., & Tsuneyuki, S. (2014). Anharmonic force constants extracted from first-principles molecular dynamics: Applications to heat transfer simulations. Journal of Physics: Condensed Matter, 26(22), 225402. Tadano, T., Gohda, Y., & Tsuneyuki, S. (2014). Anharmonic force constants extracted from first-principles molecular dynamics: Applications to heat transfer simulations. Journal of Physics: Condensed Matter, 26(22), 225402.
68.
Zurück zum Zitat Togo, A., Chaput, L., & Tanaka, I. (2015). Distributions of phonon lifetimes in Brillouin zones. Physical Review B, 91(9), 094306.CrossRef Togo, A., Chaput, L., & Tanaka, I. (2015). Distributions of phonon lifetimes in Brillouin zones. Physical Review B, 91(9), 094306.CrossRef
69.
Zurück zum Zitat Li, W., Carrete, J., Katcho, A. N., & Mingo, N. (2014). Shengbte: A solver of the Boltzmann transport equation for phonons. Computer Physics Communications, 185(6), 1747–1758.CrossRef Li, W., Carrete, J., Katcho, A. N., & Mingo, N. (2014). Shengbte: A solver of the Boltzmann transport equation for phonons. Computer Physics Communications, 185(6), 1747–1758.CrossRef
70.
Zurück zum Zitat Han, T. C., Bai, X., Thong, J. T. L., Li, B. W., & Qiu, C. W. (2014). Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterial. Advanced Materials, 26(11), 1731–1734.CrossRef Han, T. C., Bai, X., Thong, J. T. L., Li, B. W., & Qiu, C. W. (2014). Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterial. Advanced Materials, 26(11), 1731–1734.CrossRef
71.
Zurück zum Zitat Narayana, S., & Sato, Y. (2012). Heat flux manipulation with engineered thermal materials. Physical Review Letters, 108(21), 214303.CrossRef Narayana, S., & Sato, Y. (2012). Heat flux manipulation with engineered thermal materials. Physical Review Letters, 108(21), 214303.CrossRef
72.
Zurück zum Zitat Hu, R., Huang, S., Wang, M., Luo, X. B., Shiomi, J., & Qiu, C. W. (2019). Encrypted thermal printing with regionalization transformation. Advanced Materials, 31(25), 1807849.CrossRef Hu, R., Huang, S., Wang, M., Luo, X. B., Shiomi, J., & Qiu, C. W. (2019). Encrypted thermal printing with regionalization transformation. Advanced Materials, 31(25), 1807849.CrossRef
73.
Zurück zum Zitat Song, J., Huang, S., Ma, Y., Cheng, Q., Hu, R., & Luo, X. (2020). Radiative metasurface for thermal camouflage, illusion and messaging. Optics Express, 28(2), 875–885.CrossRef Song, J., Huang, S., Ma, Y., Cheng, Q., Hu, R., & Luo, X. (2020). Radiative metasurface for thermal camouflage, illusion and messaging. Optics Express, 28(2), 875–885.CrossRef
74.
Zurück zum Zitat Zhang, Z. M. (2007). Nano/microscale heat transfer. New York: McGraw-Hill. Zhang, Z. M. (2007). Nano/microscale heat transfer. New York: McGraw-Hill.
75.
Zurück zum Zitat Shen, Z., Zhou, S., & Ge, S. (2019). Liquid crystal enabled dynamic cloaking of terahertz Fano resonators. Applied Physics Letters, 114, 041106.CrossRef Shen, Z., Zhou, S., & Ge, S. (2019). Liquid crystal enabled dynamic cloaking of terahertz Fano resonators. Applied Physics Letters, 114, 041106.CrossRef
76.
Zurück zum Zitat Khoo, I. (2009). Nonlinear optics of liquid crystalline materials. Physics Reports, 471, 221–267.CrossRef Khoo, I. (2009). Nonlinear optics of liquid crystalline materials. Physics Reports, 471, 221–267.CrossRef
77.
Zurück zum Zitat Chen, P., Ma, L., & Hu, W. (2019). Chirality invertible superstructure mediated active planar optics. Nature Communications, 10, 2518.CrossRef Chen, P., Ma, L., & Hu, W. (2019). Chirality invertible superstructure mediated active planar optics. Nature Communications, 10, 2518.CrossRef
78.
Zurück zum Zitat Liu, Y., Song, J., Zhao, W., Ren, X., Cheng, Q., Luo, X., Fang, N. X., & Hu, R. (2020). Dynamic thermal camouflage via a liquid-crystal-based radiative metasurface. Nanophotonics, 9(4), 855–863.CrossRef Liu, Y., Song, J., Zhao, W., Ren, X., Cheng, Q., Luo, X., Fang, N. X., & Hu, R. (2020). Dynamic thermal camouflage via a liquid-crystal-based radiative metasurface. Nanophotonics, 9(4), 855–863.CrossRef
Metadaten
Titel
Thermal Nanostructure Design by Materials Informatics
verfasst von
Run Hu
Junichiro Shiomi
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-68310-8_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.