Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

17.04.2020 | Original Article | Ausgabe 10/2020

International Journal of Machine Learning and Cybernetics 10/2020

Accelerated inexact matrix completion algorithm via closed-form q-thresholding \((q = 1/2, 2/3)\) operator

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 10/2020
Autoren:
Zhi Wang, Chao Gao, Xiaohu Luo, Ming Tang, Jianjun Wang, Wu Chen
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

\(l_{q}\) (\(0< q < 1\)) regularization is a dominating strategy for matrix completion problems. The main goal of nonconvex \(l_{q}\) regularization based algorithm is to find a so-called low-rank solution.Unfortunately, most existing algorithms suffer from full singular value decomposition (SVD), and thus become inefficient for large-scale matrix completion problems. To alleviate this limitation, in this paper we propose an accelerated inexact algorithm to handle such problem. The key idea is to employ the closed-form q-thresholding (\(q = 1/2, 2/3\)) operator to approximate the rank of a matrix. The power method and the special “sparse plus low-rank” structure of the matrix iterates are adopted to allow efficient SVD. Besides, we employ Nesterov’s accelerated gradient method and continuation technique to further accelerate the convergence speed of our proposed algorithm. A convergence analysis shows that the sequence \(\{X_{t}\}\) generated by our proposed algorithm is bounded and has at least one accumulation point. Extensive experiments have been conducted to study its recovery performance on synthetic data, image recovery and recommendation problems. All results demonstrate that our proposed algorithm is able to achieve comparable recovery performance, while being faster and more efficient than state-of-the-art methods.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 10/2020

International Journal of Machine Learning and Cybernetics 10/2020 Zur Ausgabe