Skip to main content
Erschienen in: Journal of Scientific Computing 2/2023

01.05.2023

Accuracy and Architecture Studies of Residual Neural Network Method for Ordinary Differential Equations

verfasst von: Changxin Qiu, Aaron Bendickson, Joshua Kalyanapu, Jue Yan

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we investigate residual neural network (ResNet) method to solve ordinary differential equations. We verify the accuracy order of ResNet ODE solver matches the accuracy order of the data. Forward Euler, Runge–Kutta2 and Runge–Kutta4 finite difference schemes are adapted generating three learning data sets, which are applied to train three ResNet ODE solvers independently. The well trained ResNet solvers obtain 2nd, 3rd and 5th orders of one step errors and behave just as its counterpart finite difference method for linear and nonlinear ODEs with regular solutions. In particular, we carry out (1) architecture study in terms of number of hidden layers and neurons per layer to obtain optimal network structure; (2) target study to verify the ResNet solver is as accurate as its finite difference method counterpart; (3) solution trajectory simulations. A sequence of numerical examples are presented to demonstrate the accuracy and capability of ResNet solver.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time-series, The handbook of brain theory and neural networks (1995) LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time-series, The handbook of brain theory and neural networks (1995)
3.
Zurück zum Zitat Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012) Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)
4.
Zurück zum Zitat LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)CrossRef LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)CrossRef
5.
Zurück zum Zitat Wang, B., Yuan, B., Shi, Z., Osher, S.J.: EnResNet: ResNets ensemble via the Feynman-Kac formalism for adversarial defense and beyond. SIAM J. Math. Data Sci. 2(3), 559–582 (2020)MathSciNetCrossRefMATH Wang, B., Yuan, B., Shi, Z., Osher, S.J.: EnResNet: ResNets ensemble via the Feynman-Kac formalism for adversarial defense and beyond. SIAM J. Math. Data Sci. 2(3), 559–582 (2020)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Chaudhari, P., Oberman, A., Osher, S., Soatto, S., Carlier, G.: Deep relaxation: partial differential equations for optimizing deep neural networks (2017). arXiv:1704.04932 Chaudhari, P., Oberman, A., Osher, S., Soatto, S., Carlier, G.: Deep relaxation: partial differential equations for optimizing deep neural networks (2017). arXiv:​1704.​04932
9.
Zurück zum Zitat Chang, B., Meng, L., Haber, E., Ruthotto, L., Begert, D., Holtham, E.: Reversible architectures for arbitrarily deep residual neural networks, in: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), 2018, AAAI Press, 2018, pp. 2811–2818 Chang, B., Meng, L., Haber, E., Ruthotto, L., Begert, D., Holtham, E.: Reversible architectures for arbitrarily deep residual neural networks, in: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), 2018, AAAI Press, 2018, pp. 2811–2818
10.
Zurück zum Zitat Ruthotto, L., Haber, E.: Deep neural networks motivated by partial differential equations. J. Math. Imaging Vis. 62(3), 352–364 (2020)MathSciNetCrossRefMATH Ruthotto, L., Haber, E.: Deep neural networks motivated by partial differential equations. J. Math. Imaging Vis. 62(3), 352–364 (2020)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Lu, Y., Zhong, A., Li, Q., Dong, B.: Beyond finite layer neural networks: bridging deep architectures and numerical differential equations, arXiv:1710.10121 (2017) Lu, Y., Zhong, A., Li, Q., Dong, B.: Beyond finite layer neural networks: bridging deep architectures and numerical differential equations, arXiv:​1710.​10121 (2017)
12.
Zurück zum Zitat He, J., Xu, J.: MgNet: a unified framework of multigrid and convolutional neural network. Sci. China Math. 62(7), 1331–1354 (2019)MathSciNetCrossRefMATH He, J., Xu, J.: MgNet: a unified framework of multigrid and convolutional neural network. Sci. China Math. 62(7), 1331–1354 (2019)MathSciNetCrossRefMATH
13.
14.
Zurück zum Zitat Hornik, K., Stinchcombe, M., White, H.: Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Netw. 3(5), 551–560 (1990)CrossRef Hornik, K., Stinchcombe, M., White, H.: Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Netw. 3(5), 551–560 (1990)CrossRef
15.
Zurück zum Zitat Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inf. Theory 39(3), 930–945 (1993)MathSciNetCrossRefMATH Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inf. Theory 39(3), 930–945 (1993)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Lagaris, I., Likas, A., Fotiadis, D.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 95, 987–1000 (1998)CrossRef Lagaris, I., Likas, A., Fotiadis, D.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 95, 987–1000 (1998)CrossRef
18.
Zurück zum Zitat Rudd, K., Ferrari, S.: A constrained integration (cint) approach to solving partial differential equations using artificial neural networks. Neurocomputing 155, 277–285 (2015)CrossRef Rudd, K., Ferrari, S.: A constrained integration (cint) approach to solving partial differential equations using artificial neural networks. Neurocomputing 155, 277–285 (2015)CrossRef
19.
Zurück zum Zitat Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)MathSciNetCrossRefMATH Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Sirignano, J., Spiliopoulos, K.: DGM: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018)MathSciNetCrossRefMATH Sirignano, J., Spiliopoulos, K.: DGM: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Long, Z., Lu, Y., Dong, B.: PDE-Net 2.0: learning PDEs from data with a numeric-symbolic hybrid deep network. J. Comput. Phys. 399, 108925 (2019)MathSciNetCrossRefMATH Long, Z., Lu, Y., Dong, B.: PDE-Net 2.0: learning PDEs from data with a numeric-symbolic hybrid deep network. J. Comput. Phys. 399, 108925 (2019)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Winovich, N., Ramani, K., Lin, G.: ConvPDE-UQ: convolutional neural networks with quantified uncertainty for heterogeneous elliptic partial differential equations on varied domains. J. Comput. Phys. 394, 263–279 (2019)MathSciNetCrossRefMATH Winovich, N., Ramani, K., Lin, G.: ConvPDE-UQ: convolutional neural networks with quantified uncertainty for heterogeneous elliptic partial differential equations on varied domains. J. Comput. Phys. 394, 263–279 (2019)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Beck, C.E.W., Jentzen, A.: Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations. J. Nonlinear Sci. 29(4), 1563–1619 (2019)MathSciNetCrossRefMATH Beck, C.E.W., Jentzen, A.: Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations. J. Nonlinear Sci. 29(4), 1563–1619 (2019)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Fan, Y., Lin, L., Ying, L., Zepeda-Núñez, L.: A multiscale neural network based on hierarchical matrices. Multiscale Model. Simul. 17(4), 1189–1213 (2019)MathSciNetCrossRefMATH Fan, Y., Lin, L., Ying, L., Zepeda-Núñez, L.: A multiscale neural network based on hierarchical matrices. Multiscale Model. Simul. 17(4), 1189–1213 (2019)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Khoo, Y., Lu, J., Ying, L.: Solving parametric pde problems with artificial neural networks, Eur. J. Appl. Math. (2020) 1–15 Khoo, Y., Lu, J., Ying, L.: Solving parametric pde problems with artificial neural networks, Eur. J. Appl. Math. (2020) 1–15
26.
Zurück zum Zitat Li, Y., Lu, J., Mao, A.: Variational training of neural network approximations of solution maps for physical models. J. Comput. Phys. 409, 109338 (2020)MathSciNetCrossRefMATH Li, Y., Lu, J., Mao, A.: Variational training of neural network approximations of solution maps for physical models. J. Comput. Phys. 409, 109338 (2020)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Qiu, C., Yan, J.: Cell-average based neural network method for hyperbolic and parabolic partial differential equations, J. Comput. Phys. Under review Qiu, C., Yan, J.: Cell-average based neural network method for hyperbolic and parabolic partial differential equations, J. Comput. Phys. Under review
28.
Zurück zum Zitat Qin, T., Wu, K., Xiu, D.: Data driven governing equations approximation using deep neural networks. J. Comput. Phys. 395, 620–635 (2019)MathSciNetCrossRefMATH Qin, T., Wu, K., Xiu, D.: Data driven governing equations approximation using deep neural networks. J. Comput. Phys. 395, 620–635 (2019)MathSciNetCrossRefMATH
29.
Zurück zum Zitat He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) 770–778 He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) 770–778
30.
Zurück zum Zitat Chen, S., Billings, S.A., Grant, P.M.: Non-linear system identification using neural networks. Int. J. Control 51(6), 1191–1214 (1990)CrossRefMATH Chen, S., Billings, S.A., Grant, P.M.: Non-linear system identification using neural networks. Int. J. Control 51(6), 1191–1214 (1990)CrossRefMATH
31.
Zurück zum Zitat González-García, R., Rico-Martínez, R., Kevrekidis, I.: Identification of distributed parameter systems: A neural net based approach, Computers & Chemical Engineering 22 (1998) S965–S968, european Symposium on Computer Aided Process Engineering-8 González-García, R., Rico-Martínez, R., Kevrekidis, I.: Identification of distributed parameter systems: A neural net based approach, Computers & Chemical Engineering 22 (1998) S965–S968, european Symposium on Computer Aided Process Engineering-8
32.
Zurück zum Zitat Milano, M., Koumoutsakos, P.: Neural network modeling for near wall turbulent flow. J. Comput. Phys. 182(1), 1–26 (2002)CrossRefMATH Milano, M., Koumoutsakos, P.: Neural network modeling for near wall turbulent flow. J. Comput. Phys. 182(1), 1–26 (2002)CrossRefMATH
33.
Zurück zum Zitat Pathak, J., Lu, Z., Hunt, B.R., Girvan, M., Ott, E.: Using machine learning to replicate chaotic attractors and calculate lyapunov exponents from data. Chaos Interdiscip. J. Nonlinear Sci. 27(12), 121102 (2017)MathSciNetCrossRefMATH Pathak, J., Lu, Z., Hunt, B.R., Girvan, M., Ott, E.: Using machine learning to replicate chaotic attractors and calculate lyapunov exponents from data. Chaos Interdiscip. J. Nonlinear Sci. 27(12), 121102 (2017)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Vlachas, P. R., Byeon, W., Wan, Z. Y., Sapsis, T. P., Koumoutsakos, P.: Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474 (2213) (2018) 20170844 Vlachas, P. R., Byeon, W., Wan, Z. Y., Sapsis, T. P., Koumoutsakos, P.: Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474 (2213) (2018) 20170844
35.
Zurück zum Zitat Mardt, A., Pasquali, L., Wu, H., Noé, F.: Vampnets: deep learning of molecular kinetics, Nat. Commun. 9 (5) (2018) Mardt, A., Pasquali, L., Wu, H., Noé, F.: Vampnets: deep learning of molecular kinetics, Nat. Commun. 9 (5) (2018)
36.
Zurück zum Zitat Yeung, E., Kundu, S., Hodas, N.: Learning deep neural network representations for koopman operators of nonlinear dynamical systems. Am. Control Conf. (ACC) 2019, 4832–4839 (2019) Yeung, E., Kundu, S., Hodas, N.: Learning deep neural network representations for koopman operators of nonlinear dynamical systems. Am. Control Conf. (ACC) 2019, 4832–4839 (2019)
37.
Zurück zum Zitat Raissi, M., Perdikaris, P., Karniadakis, G. E.: Multistep neural networks for data-driven discovery of nonlinear dynamical systems (2018). arXiv:1801.01236 Raissi, M., Perdikaris, P., Karniadakis, G. E.: Multistep neural networks for data-driven discovery of nonlinear dynamical systems (2018). arXiv:​1801.​01236
38.
Zurück zum Zitat Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.: Neural ordinary differential equations 12, 6572–6583 (2018) Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.: Neural ordinary differential equations 12, 6572–6583 (2018)
39.
Zurück zum Zitat Rudy, S.H., Kutz, J.N., Brunton, S.L.: Deep learning of dynamics and signal-noise decomposition with time-stepping constraints. J. Comput. Phys. 396, 483–506 (2019)MathSciNetCrossRefMATH Rudy, S.H., Kutz, J.N., Brunton, S.L.: Deep learning of dynamics and signal-noise decomposition with time-stepping constraints. J. Comput. Phys. 396, 483–506 (2019)MathSciNetCrossRefMATH
40.
Zurück zum Zitat Sun, Y., Zhang, L., Schaeffer, H.: NeuPDE: neural network based ordinary and partial differential equations for modeling time-dependent data, in: Lu, J., Ward, R. (Eds.), Proceedings of The First Mathematical and Scientific Machine Learning Conference, Vol. 107 of Proceedings of Machine Learning Research, PMLR, Princeton University, Princeton, NJ, USA, 2020, pp. 352–372 Sun, Y., Zhang, L., Schaeffer, H.: NeuPDE: neural network based ordinary and partial differential equations for modeling time-dependent data, in: Lu, J., Ward, R. (Eds.), Proceedings of The First Mathematical and Scientific Machine Learning Conference, Vol. 107 of Proceedings of Machine Learning Research, PMLR, Princeton University, Princeton, NJ, USA, 2020, pp. 352–372
42.
Zurück zum Zitat Xie, X., Zhang, G., Webster, C.G.: Non-intrusive inference reduced order model for fluids using deep multistep neural network. Mathematics 7(8), 757 (2019)CrossRef Xie, X., Zhang, G., Webster, C.G.: Non-intrusive inference reduced order model for fluids using deep multistep neural network. Mathematics 7(8), 757 (2019)CrossRef
44.
Zurück zum Zitat Zagoruyko, S., Komodakis, N.: Wide residual networks, Proceedings of the British Machine Vision Conference (BMVC) (87) (2016) 1–12 Zagoruyko, S., Komodakis, N.: Wide residual networks, Proceedings of the British Machine Vision Conference (BMVC) (87) (2016) 1–12
45.
Zurück zum Zitat Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K. Q.: Densely connected convolutional networks, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) 2261–2269 Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K. Q.: Densely connected convolutional networks, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) 2261–2269
46.
Zurück zum Zitat Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR) 2017, 5987–5995 (2017) Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR) 2017, 5987–5995 (2017)
47.
Zurück zum Zitat Haber, E., Ruthotto, L, Holtham, E.: Learning across scales—A multiscale method for convolution neural networks, arXiv arXiv:1703.02009 (2017) Haber, E., Ruthotto, L, Holtham, E.: Learning across scales—A multiscale method for convolution neural networks, arXiv arXiv:​1703.​02009 (2017)
48.
Zurück zum Zitat Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2), 251–257 (1991)MathSciNetCrossRef Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2), 251–257 (1991)MathSciNetCrossRef
49.
Zurück zum Zitat Leshno, M., Lin, V.Y., Pinkus, A., Schocken, S.: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw. 6(6), 861–867 (1993)CrossRef Leshno, M., Lin, V.Y., Pinkus, A., Schocken, S.: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw. 6(6), 861–867 (1993)CrossRef
50.
Zurück zum Zitat Venturi, L., Jelassi, S., Ozuch, T., Bruna, J.: Depth separation beyond radial functions. J. Mach. Learn. Res. 23, 1–56 (2022) Venturi, L., Jelassi, S., Ozuch, T., Bruna, J.: Depth separation beyond radial functions. J. Mach. Learn. Res. 23, 1–56 (2022)
51.
Zurück zum Zitat Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford, A., Wu, J., Amodei, D.: Scaling laws for neural language models (2020). arXiv:2001.08361 Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford, A., Wu, J., Amodei, D.: Scaling laws for neural language models (2020). arXiv:​2001.​08361
52.
53.
Zurück zum Zitat Boyce, W. E., DiPrima, R. C.: Elementary differential equations and boundary value problems, John Wiley & Sons, Inc., New York-London-Sydney, 10th Edition Boyce, W. E., DiPrima, R. C.: Elementary differential equations and boundary value problems, John Wiley & Sons, Inc., New York-London-Sydney, 10th Edition
54.
Zurück zum Zitat Chartrand, R.: Numerical differentiation of noisy, nonsmooth data. ISRN Appl, Math (2011) Chartrand, R.: Numerical differentiation of noisy, nonsmooth data. ISRN Appl, Math (2011)
55.
Zurück zum Zitat Pulch, R.: Polynomial chaos for semiexplicit differential algebraic equations of index 1. Int. J. Uncertain. Quantif. 3(1), 1–23 (2013)MathSciNetCrossRefMATH Pulch, R.: Polynomial chaos for semiexplicit differential algebraic equations of index 1. Int. J. Uncertain. Quantif. 3(1), 1–23 (2013)MathSciNetCrossRefMATH
Metadaten
Titel
Accuracy and Architecture Studies of Residual Neural Network Method for Ordinary Differential Equations
verfasst von
Changxin Qiu
Aaron Bendickson
Joshua Kalyanapu
Jue Yan
Publikationsdatum
01.05.2023
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2023
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-023-02173-x

Weitere Artikel der Ausgabe 2/2023

Journal of Scientific Computing 2/2023 Zur Ausgabe

Premium Partner