Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 2/2024

01.01.2024

Acetone gas sensing behavior of polypyrrole/ZnO nanocomposites synthesized via chemical oxidation method

verfasst von: Dimple, Rahul Madan, Vikas Kumar, Devendra Mohan, Ravish Garg

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study reports the Acetone gas sensing behavior of Polypyrrole (Ppy) and Polypyrrole/Zinc Oxide (Ppy/ZnO) nanocomposites synthesized by a simple, inexpensive, and eco-friendly chemical oxidation polymerization method using methyl orange as a surfactant. The Ppy/ZnO nanocomposites were synthesized by adding Zinc Oxide with different weight percentages of 10, 15, and 20 wt% during the synthesis of Polypyrrole to enhance the electrical and chemical properties of pure Polypyrrole. The structural properties of the synthesized nanocomposites were investigated by X-ray diffraction which revealed the amorphous nature of the samples. Field Emission Scanning Electron Microscopy (FESEM) confirmed the cylindrical-shaped morphology of the prepared nanocomposites. The elemental analysis was performed using Energy-Dispersive X-ray spectroscopy. It was observed that Raman intensity was rising dramatically with an increase in ZnO concentration. Using UV/VIS spectroscopy, the materials’ light absorption was determined. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of C–H, C–C, and Zn–O chemical bonds in the nanocomposites. The highest percentage response of 41.3% was observed for Ppy/ZnO (20 wt%) at 200 ppm of Acetone. The shortest response time of the 70s was attained by the Ppy/ZnO (20 wt%) nanocomposite at 200 ppm. The Selectivity, Reproducibility, and effect of humidity were also investigated on the synthesized nanocomposites. The Selectivity was observed to be highest for Acetone as compared to that of CO2, Hexane, and Chloroform. The percentage response was found to be increasing with the increase in humidity level. The sensing response was decreased after 180 days. These results show that Ppy/ZnO nanocomposites are a promising material for Acetone gas sensing. Ppy–ZnO hybrid materials were discovered to have two key advantages over pure Ppy and ZnO: hybrid materials had superior selectivity and sensing response than pure Ppy, and the hybrid materials’ operating temperature was significantly lower.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S.R. Ananda, M.V. Murugendrappa, Proceedings 5(1), 2955–2959 (2018) S.R. Ananda, M.V. Murugendrappa, Proceedings 5(1), 2955–2959 (2018)
2.
Zurück zum Zitat M. Wysocka-Żołopa, K. Winkler, Electrochim. Acta. 258, 1421–1434 (2017)CrossRef M. Wysocka-Żołopa, K. Winkler, Electrochim. Acta. 258, 1421–1434 (2017)CrossRef
3.
Zurück zum Zitat T.H. Chao, J. March, J. Polym. Sci., Part A: Polym. Chem. 26(3), 743–753 (1988)CrossRefADS T.H. Chao, J. March, J. Polym. Sci., Part A: Polym. Chem. 26(3), 743–753 (1988)CrossRefADS
4.
Zurück zum Zitat P. Dutta, S. Biswas, S.K. De, Mater. Res. Bull. 37(1), 193–200 (2002)CrossRef P. Dutta, S. Biswas, S.K. De, Mater. Res. Bull. 37(1), 193–200 (2002)CrossRef
5.
Zurück zum Zitat H.K. Inamdar, M.A. Prasad, M. Sasikal, Mater. Today: Proc. 5(10), 22652–22656 (2018) H.K. Inamdar, M.A. Prasad, M. Sasikal, Mater. Today: Proc. 5(10), 22652–22656 (2018)
6.
Zurück zum Zitat S.M. Ambalgi, H.K. Inamdar, V.T. Manjula, S. Nagaraja, S.G. Hogade, B. Sannakki, Int. J. Eng. Res. 5(2), 119–122 (2016) S.M. Ambalgi, H.K. Inamdar, V.T. Manjula, S. Nagaraja, S.G. Hogade, B. Sannakki, Int. J. Eng. Res. 5(2), 119–122 (2016)
7.
Zurück zum Zitat H. Farrokhi, O. Khani, F. Nemati, M. Jazirehpour, Synth. Met. 215, 142–149 (2016)CrossRef H. Farrokhi, O. Khani, F. Nemati, M. Jazirehpour, Synth. Met. 215, 142–149 (2016)CrossRef
9.
Zurück zum Zitat A. Talaie, J.Y. Lee, Y.K. Lee, J. Jang, J.A. Romagnoli, T. Taguchi, & E. Maeder,Thin Solid Films. 363(1–2), 163–166 (2000)CrossRefADS A. Talaie, J.Y. Lee, Y.K. Lee, J. Jang, J.A. Romagnoli, T. Taguchi, & E. Maeder,Thin Solid Films. 363(1–2), 163–166 (2000)CrossRefADS
10.
Zurück zum Zitat H. Ge, P.R. Teasdale, G.G. Wallace, J. Chromatogr. A 544, 305–316 (1991)CrossRef H. Ge, P.R. Teasdale, G.G. Wallace, J. Chromatogr. A 544, 305–316 (1991)CrossRef
11.
Zurück zum Zitat S. Sukeerthi, A.Q. Contractor, Electrochim. Acta 39, 1321–1324 (1994)CrossRef S. Sukeerthi, A.Q. Contractor, Electrochim. Acta 39, 1321–1324 (1994)CrossRef
12.
Zurück zum Zitat Y. Egami, T. Yamamoto, K. Suzuki, T. Yasuhara, E. Higuchi, H. Inoue, J. Mater. Sci. 47, 382–390 (2012)CrossRefADS Y. Egami, T. Yamamoto, K. Suzuki, T. Yasuhara, E. Higuchi, H. Inoue, J. Mater. Sci. 47, 382–390 (2012)CrossRefADS
13.
14.
Zurück zum Zitat A. Mirmohseni, W.E. Price, G.G. Wallace, H. Zhao, J. Intell. Mater. Syst. Struct. 4(1), 43–49 (1993)CrossRef A. Mirmohseni, W.E. Price, G.G. Wallace, H. Zhao, J. Intell. Mater. Syst. Struct. 4(1), 43–49 (1993)CrossRef
15.
Zurück zum Zitat R.H.M. Van de Leur, A. Van der Waal, Synth. Met. 102(1–3), 1330–1331 (1999)CrossRef R.H.M. Van de Leur, A. Van der Waal, Synth. Met. 102(1–3), 1330–1331 (1999)CrossRef
16.
17.
Zurück zum Zitat I. Jimenez, J. Arbiol, G. Dezanneau, A. Cornet, J.R. Morante, Sens. Actuators B 93, 475–485 (2003)CrossRef I. Jimenez, J. Arbiol, G. Dezanneau, A. Cornet, J.R. Morante, Sens. Actuators B 93, 475–485 (2003)CrossRef
18.
Zurück zum Zitat B. Baruwati, D.K. Kumar, S.V. Manorama Sens. Actuators B 119, 676–682 (2006)CrossRef B. Baruwati, D.K. Kumar, S.V. Manorama Sens. Actuators B 119, 676–682 (2006)CrossRef
19.
Zurück zum Zitat V.B. Patil, S.G. Pawar, M.A. Chougule, B.T. Raut, R.N. Mulik, S. Sen, Sens. Transducers J. 128(5), 100–114 (2011) V.B. Patil, S.G. Pawar, M.A. Chougule, B.T. Raut, R.N. Mulik, S. Sen, Sens. Transducers J. 128(5), 100–114 (2011)
20.
Zurück zum Zitat N. Guernion, B.P.J. de Lacy Costello, N.M. Ratcliffe, Synth. Met. 128(2), 139–147 (2002)CrossRef N. Guernion, B.P.J. de Lacy Costello, N.M. Ratcliffe, Synth. Met. 128(2), 139–147 (2002)CrossRef
21.
Zurück zum Zitat R.P. Tandon, M.R. Tripathy, A.K. Arora, S. Hotchandani Sens. Actuators B 114, 768–773 (2006)CrossRef R.P. Tandon, M.R. Tripathy, A.K. Arora, S. Hotchandani Sens. Actuators B 114, 768–773 (2006)CrossRef
22.
23.
Zurück zum Zitat Z. Sadek, C. Baker, D.A. Powell, W. Wlodarski, C. Shin, R.B. Kaner, Kalantar-Zadeh. Nanotechnology. 17, 4488–4492 (2006)CrossRefADS Z. Sadek, C. Baker, D.A. Powell, W. Wlodarski, C. Shin, R.B. Kaner, Kalantar-Zadeh. Nanotechnology. 17, 4488–4492 (2006)CrossRefADS
24.
Zurück zum Zitat R. Parch, S.G. Gangolli, E. Matijevic et al., J. Colloid Interface Sci. 144(1), 27–35 (1991)CrossRefADS R. Parch, S.G. Gangolli, E. Matijevic et al., J. Colloid Interface Sci. 144(1), 27–35 (1991)CrossRefADS
25.
26.
Zurück zum Zitat S.G. Pawar, S.L. Patil, M.A. Chougule, B.T. Raut, S.A. Pawar, V.B. Patil, Sens. Transducers J. 125(2), 107–114 (2011) S.G. Pawar, S.L. Patil, M.A. Chougule, B.T. Raut, S.A. Pawar, V.B. Patil, Sens. Transducers J. 125(2), 107–114 (2011)
27.
Zurück zum Zitat L. Genga, Y. Zhao, X. Huang, S. Wang, S. Zhang, W. Huang, Wu. Shihua, Synth. Met 156(17), 16 (2006) L. Genga, Y. Zhao, X. Huang, S. Wang, S. Zhang, W. Huang, Wu. Shihua,   Synth. Met 156(17), 16 (2006)
28.
Zurück zum Zitat V. Kumar, R. Madan, D. Mohan, J. Mater. Sci.: Mater. Electron. 33(10), 7655–7667 (2022) V. Kumar, R. Madan, D. Mohan, J. Mater. Sci.: Mater. Electron. 33(10), 7655–7667 (2022)
29.
Zurück zum Zitat V. Kumar, R. Madan, B. Singh, D. Mohan, J. Mater. Sci.: Mater. Electron. 34(7), 582 (2023) V. Kumar, R. Madan, B. Singh, D. Mohan, J. Mater. Sci.: Mater. Electron. 34(7), 582 (2023)
30.
Zurück zum Zitat L. Ruangchuay, Petroleum and Petrochemical College (P.D. Thesis), Chulalongkorn University (Bangkok, Thailand, 2003) L. Ruangchuay, Petroleum and Petrochemical College (P.D. Thesis), Chulalongkorn University (Bangkok, Thailand, 2003)
31.
Zurück zum Zitat M.A. Chougule, D.S. Dalavi, S. Mali, P.S. Patil, A.V. Moholkar, G.L. Agawane, V.B. Patil, Measurement. 45(8), 1989–1996 (2012)CrossRefADS M.A. Chougule, D.S. Dalavi, S. Mali, P.S. Patil, A.V. Moholkar, G.L. Agawane, V.B. Patil, Measurement. 45(8), 1989–1996 (2012)CrossRefADS
32.
Zurück zum Zitat S.S. Barkade, D.V. Pinjari, A.K. Singh, P.R. Gogate, J.B. Naik, S.H. Sonawane, M. Ashokkumar, A.B. Pandit, Ind. Eng. Chem. Res. 52, 7704–7712 (2013)CrossRef S.S. Barkade, D.V. Pinjari, A.K. Singh, P.R. Gogate, J.B. Naik, S.H. Sonawane, M. Ashokkumar, A.B. Pandit, Ind. Eng. Chem. Res. 52, 7704–7712 (2013)CrossRef
33.
Zurück zum Zitat Y. Wang, W. Jia, T. Strout, A. Schempf, H. Zhang, B. Li, J. Cui, Y. Lei, Electroanalysis. 21, 1432–1438 (2009)CrossRef Y. Wang, W. Jia, T. Strout, A. Schempf, H. Zhang, B. Li, J. Cui, Y. Lei, Electroanalysis. 21, 1432–1438 (2009)CrossRef
34.
Zurück zum Zitat R. Garg, V. Kumar, D. Kumar, S.K. Chakarvarti, Sens. Instrum. 3(1), 1–13 (2015) R. Garg, V. Kumar, D. Kumar, S.K. Chakarvarti, Sens. Instrum. 3(1), 1–13 (2015)
35.
36.
37.
Zurück zum Zitat V.B. Aaditya, B.M. Bharathesh, R. Harshitha, B.V. Chaluvaraju, U.P. Raghavendra, M.V. Murugendrappa, J. Mater. Sci.: Mater. Electron. 29, 2848–2859 (2018) V.B. Aaditya, B.M. Bharathesh, R. Harshitha, B.V. Chaluvaraju, U.P. Raghavendra, M.V. Murugendrappa, J. Mater. Sci.: Mater. Electron. 29, 2848–2859 (2018)
40.
Zurück zum Zitat Q.P. Luo, X.Y. Yu, B.X. Lei, H.Y. Chen, D.B. Kuang, C.Y. Su, J. Phys. Chem. C 116(14), 8111–8117 (2012)CrossRef Q.P. Luo, X.Y. Yu, B.X. Lei, H.Y. Chen, D.B. Kuang, C.Y. Su, J. Phys. Chem. C 116(14), 8111–8117 (2012)CrossRef
41.
Zurück zum Zitat M. Grzeszczuk, A. Kępas, C. Kvarnstrom, A. Ivaska, Synth. Met. 160(7–8), 636–642 (2010)CrossRef M. Grzeszczuk, A. Kępas, C. Kvarnstrom, A. Ivaska, Synth. Met. 160(7–8), 636–642 (2010)CrossRef
42.
Zurück zum Zitat J. Arjomandi, S. Bilal, H. Van Hoang, R. Holze, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 78(1), 1–6 (2011)CrossRefADS J. Arjomandi, S. Bilal, H. Van Hoang, R. Holze, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 78(1), 1–6 (2011)CrossRefADS
43.
Zurück zum Zitat P.T. Hsieh, Y.C. Chen, K.S. Kao, M.S. Lee, C.C. Cheng, J. Eur. Ceram. Soc. 27, 3815–3818 (2007)CrossRef P.T. Hsieh, Y.C. Chen, K.S. Kao, M.S. Lee, C.C. Cheng, J. Eur. Ceram. Soc. 27, 3815–3818 (2007)CrossRef
44.
Zurück zum Zitat H.M. Shanshool, M. Yahaya, W.M.M. Yunus, I.Y. Abdullah, J. Mater. Sci.: Mater. Electron. 27, 9804–9811 (2016) H.M. Shanshool, M. Yahaya, W.M.M. Yunus, I.Y. Abdullah, J. Mater. Sci.: Mater. Electron. 27, 9804–9811 (2016)
45.
Zurück zum Zitat S. Chatterjee, A.K. Nandi, Chem. Commun. 47(41), 11510–11512 (2011)CrossRef S. Chatterjee, A.K. Nandi, Chem. Commun. 47(41), 11510–11512 (2011)CrossRef
46.
50.
51.
Metadaten
Titel
Acetone gas sensing behavior of polypyrrole/ZnO nanocomposites synthesized via chemical oxidation method
verfasst von
Dimple
Rahul Madan
Vikas Kumar
Devendra Mohan
Ravish Garg
Publikationsdatum
01.01.2024
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 2/2024
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-024-11931-y

Weitere Artikel der Ausgabe 2/2024

Journal of Materials Science: Materials in Electronics 2/2024 Zur Ausgabe

Neuer Inhalt