Skip to main content
Erschienen in: Strength of Materials 4/2019

14.11.2019

Acidic-Thermal Ageing Effect on Compression Stress Relaxation of Silicone Rubber

verfasst von: G. Li, J. M. Gong, J. Z. Tan, D. S. Zhu, W. H. Jia, X. J. Lu

Erschienen in: Strength of Materials | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The compression properties of silicone rubbers used as gaskets in PEM fuel cells are studied. The specimens are aged under different test conditions, viz, high temperature, humid air, and acidic solutions, prepared to match real PEM fuel cell operation conditions. The compression and stress relaxation tests are conducted. Temperature, humid air and acidic solution exert a serious effects on the mechanical performance of silicone rubbers. All the three factors can cause an increase in the stress relaxation modulus and permanent compression deformation. The effects of high temperature and an acidic solution are more pronounced. This can accelerate the deterioration of mechanical properties and decrease the sealing efficiency of gaskets, which would influence the durability of PEM fuel cells. It creates the basis for life prediction of silicone rubbers under appropriate accelerated durability test conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Li, J. Z. Tan, and J. M. Gong, “Chemical aging of the silicone rubber in a simulated and three accelerated proton exchange membrane fuel cell environments,” J. Power Sources, 217, 175–183 (2012).CrossRef G. Li, J. Z. Tan, and J. M. Gong, “Chemical aging of the silicone rubber in a simulated and three accelerated proton exchange membrane fuel cell environments,” J. Power Sources, 217, 175–183 (2012).CrossRef
2.
Zurück zum Zitat J. Tan, Y. J. Chao, M. Yang, et al., “Degradation characteristics of elastomeric gasket materials in a simulated PEM fuel cell environment,” J. Mater. Eng. Perform., 17, 785–792 (2008).CrossRef J. Tan, Y. J. Chao, M. Yang, et al., “Degradation characteristics of elastomeric gasket materials in a simulated PEM fuel cell environment,” J. Mater. Eng. Perform., 17, 785–792 (2008).CrossRef
3.
Zurück zum Zitat G. Li, J. Z. Tan, J. M. Gong, and W. H. Jia, “Degradation mechanism of the silicone rubber in simulated PEM fuel cell environments,” J. Chem. Ind. Eng. (China), 65, No. 9, 3669–3675 (2014). G. Li, J. Z. Tan, J. M. Gong, and W. H. Jia, “Degradation mechanism of the silicone rubber in simulated PEM fuel cell environments,” J. Chem. Ind. Eng. (China), 65, No. 9, 3669–3675 (2014).
4.
Zurück zum Zitat J. Tan, Y. J. Chao, M. Yang, et al., “Chemical and mechanical stability of a Silicone gasket material exposed to PEM fuel cell environment,” Int. J. Hydrogen Energy, 36, 1846–1852 (2011).CrossRef J. Tan, Y. J. Chao, M. Yang, et al., “Chemical and mechanical stability of a Silicone gasket material exposed to PEM fuel cell environment,” Int. J. Hydrogen Energy, 36, 1846–1852 (2011).CrossRef
5.
Zurück zum Zitat Y. Chen, K. Hou, C. Lin, et al., “A synchronous investigation of the degradation of metallic bipolar plates in real and simulated environments of polymer electrolyte membrane fuel cells,” J. Power Sources, 197, 161–167 (2012).CrossRef Y. Chen, K. Hou, C. Lin, et al., “A synchronous investigation of the degradation of metallic bipolar plates in real and simulated environments of polymer electrolyte membrane fuel cells,” J. Power Sources, 197, 161–167 (2012).CrossRef
6.
Zurück zum Zitat C. Lin, C. Chien, J. Tan, et al., “Chemical degradation of five elastomeric seal materials in a simulated and an accelerated PEM fuel cell environment,” J. Power Sources, 196, 1955–1966 (2011).CrossRef C. Lin, C. Chien, J. Tan, et al., “Chemical degradation of five elastomeric seal materials in a simulated and an accelerated PEM fuel cell environment,” J. Power Sources, 196, 1955–1966 (2011).CrossRef
7.
Zurück zum Zitat T. Cui, C.-W. Lin, C. H. Chien, et al., “Service life prediction of seal in PEM fuel cells,” in: Proc. of the SEM Annual Conf. (June 7–10, 2010, Indianapolis, Indiana, USA) (2010), https://doi.org/10.1007/978-1-4419-9798-2_4. T. Cui, C.-W. Lin, C. H. Chien, et al., “Service life prediction of seal in PEM fuel cells,” in: Proc. of the SEM Annual Conf. (June 7–10, 2010, Indianapolis, Indiana, USA) (2010), https://​doi.​org/​10.​1007/​978-1-4419-9798-2_​4.​
8.
Zurück zum Zitat T. Cui, Y. J. Chao, and J. W. Van Zee, “Stress relaxation behavior of EPDM seals in polymer electrolyte membrane fuel cell environment,” Int. J. Hydrogen Energy, 37, 13478–13483 (2012).CrossRef T. Cui, Y. J. Chao, and J. W. Van Zee, “Stress relaxation behavior of EPDM seals in polymer electrolyte membrane fuel cell environment,” Int. J. Hydrogen Energy, 37, 13478–13483 (2012).CrossRef
9.
Zurück zum Zitat T. Cui, Y. J. Chao, and J. W. Van Zee, “Stress relaxation behavior of a liquid silicone rubber seal subjected to temperature cycling,” J. Electrochem. Soc., No. 16, 1037–1037 (2011). T. Cui, Y. J. Chao, and J. W. Van Zee, “Stress relaxation behavior of a liquid silicone rubber seal subjected to temperature cycling,” J. Electrochem. Soc., No. 16, 1037–1037 (2011).
10.
Zurück zum Zitat R. Elleuch and W. Taktak, “Viscoelastic behavior of HDPE polymer using tensile and compressive loading,” J. Mater. Eng. Perform., 15, No. 1, 111–116 (2006).CrossRef R. Elleuch and W. Taktak, “Viscoelastic behavior of HDPE polymer using tensile and compressive loading,” J. Mater. Eng. Perform., 15, No. 1, 111–116 (2006).CrossRef
11.
Zurück zum Zitat D. Santiago, F. Ferrando and S. De la Flor, “Influence of holding time on shape recovery in a polyurethane shape-memory polymer,” J. Mater. Eng. Perform., 23, No. 7, 2567–2573 (2014).CrossRef D. Santiago, F. Ferrando and S. De la Flor, “Influence of holding time on shape recovery in a polyurethane shape-memory polymer,” J. Mater. Eng. Perform., 23, No. 7, 2567–2573 (2014).CrossRef
12.
Zurück zum Zitat J. Zhao, R. Yang, R. Iervolino, et al., “The effect of thermo-oxidation on the continuous stress relaxation behavior of nitrile rubber,” Polym. Degrad. Stabil., 115, 32–37 (2015).CrossRef J. Zhao, R. Yang, R. Iervolino, et al., “The effect of thermo-oxidation on the continuous stress relaxation behavior of nitrile rubber,” Polym. Degrad. Stabil., 115, 32–37 (2015).CrossRef
13.
Zurück zum Zitat V. A. Fernandes and D. S. De Focatiis, “The role of deformation history on stress relaxation and stress memory of filled rubber,” Polym. Test., 40, 124–132 (2014).CrossRef V. A. Fernandes and D. S. De Focatiis, “The role of deformation history on stress relaxation and stress memory of filled rubber,” Polym. Test., 40, 124–132 (2014).CrossRef
14.
Zurück zum Zitat J. Liu, P. Lin, X. Li, and S. Q. Wang, “Nonlinear stress relaxation behavior of ductile polymer glasses from large extension and compression,” Polymer, 81, 129–139 (2015).CrossRef J. Liu, P. Lin, X. Li, and S. Q. Wang, “Nonlinear stress relaxation behavior of ductile polymer glasses from large extension and compression,” Polymer, 81, 129–139 (2015).CrossRef
15.
Zurück zum Zitat H. Li, B. Zhang, and G. Bai, “Effects of constructing different unit cells on predicting composite viscoelastic properties,” Compos. Struct., 125, 459–466 (2015).CrossRef H. Li, B. Zhang, and G. Bai, “Effects of constructing different unit cells on predicting composite viscoelastic properties,” Compos. Struct., 125, 459–466 (2015).CrossRef
16.
Zurück zum Zitat K. V. Rao, G. S. Ananthapadmanabha, and G. N. Dayananda, “Effect of cross-linking density on creep and recovery behavior in epoxy-based shape memory polymers (SMEPs) for structural applications,” J. Mater. Eng. Perform., 25, No. 12, 5314–5322 (2016).CrossRef K. V. Rao, G. S. Ananthapadmanabha, and G. N. Dayananda, “Effect of cross-linking density on creep and recovery behavior in epoxy-based shape memory polymers (SMEPs) for structural applications,” J. Mater. Eng. Perform., 25, No. 12, 5314–5322 (2016).CrossRef
17.
Zurück zum Zitat E. A. Pieczyska, M. Maj, K. Kowalczyk-Gajewska, et al., “Mechanical and infrared thermography analysis of shape memory polyurethane,” J. Mater. Eng. Perform., 23, No. 7, 2553–2560 (2014).CrossRef E. A. Pieczyska, M. Maj, K. Kowalczyk-Gajewska, et al., “Mechanical and infrared thermography analysis of shape memory polyurethane,” J. Mater. Eng. Perform., 23, No. 7, 2553–2560 (2014).CrossRef
18.
Zurück zum Zitat T. Rey, G. Chagnon, J.-B. Le Cam, and D. Favier, “Influence of the temperature on the mechanical behaviour of filled and unfilled silicone rubbers,” Polym. Test., 32, No. 3, 492–501 (2013).CrossRef T. Rey, G. Chagnon, J.-B. Le Cam, and D. Favier, “Influence of the temperature on the mechanical behaviour of filled and unfilled silicone rubbers,” Polym. Test., 32, No. 3, 492–501 (2013).CrossRef
19.
Zurück zum Zitat A. Kömmling, M. Jaunich, and D. Wolff, “Effects of heterogeneous aging in compressed HNBR and EPDM O-ring seals,” Polym. Degrad. Stabil., 126, 39–46 (2016).CrossRef A. Kömmling, M. Jaunich, and D. Wolff, “Effects of heterogeneous aging in compressed HNBR and EPDM O-ring seals,” Polym. Degrad. Stabil., 126, 39–46 (2016).CrossRef
20.
Zurück zum Zitat T. K. Vaidyanathan and J. Vaidyanathan, “Validity of predictive models of stress relaxation in selected dental polymers,” Dent. Mater., 31, No. 7, 799–806 (2015).CrossRef T. K. Vaidyanathan and J. Vaidyanathan, “Validity of predictive models of stress relaxation in selected dental polymers,” Dent. Mater., 31, No. 7, 799–806 (2015).CrossRef
21.
Zurück zum Zitat H. J. Maria, N. Lyczko, A. Nzihou, et al., “Stress relaxation behavior of organically modified montmorillonite filled natural rubber/nitrile rubber nanocomposites,” Appl. Clay Sci., 87, 120–128 (2014).CrossRef H. J. Maria, N. Lyczko, A. Nzihou, et al., “Stress relaxation behavior of organically modified montmorillonite filled natural rubber/nitrile rubber nanocomposites,” Appl. Clay Sci., 87, 120–128 (2014).CrossRef
22.
Zurück zum Zitat K. Yamaguchi, A. G. Thomas, and J. J. Busfield, “Stress relaxation, creep and set recovery of elastomers,” Int. J. Nonlin. Mech., 68, 66–70 (2015).CrossRef K. Yamaguchi, A. G. Thomas, and J. J. Busfield, “Stress relaxation, creep and set recovery of elastomers,” Int. J. Nonlin. Mech., 68, 66–70 (2015).CrossRef
23.
Zurück zum Zitat GB/T 7759.1-2015. Rubber, Vulcanized or Thermoplastic – Determination of Compression Set – Part 1: At Ambient or Elevated Temperatures, National Standards of People’s Republic of China (2015). GB/T 7759.1-2015. Rubber, Vulcanized or Thermoplastic – Determination of Compression Set – Part 1: At Ambient or Elevated Temperatures, National Standards of People’s Republic of China (2015).
24.
Zurück zum Zitat GB/T 1685-2008. Rubber, Vulcanized or Thermoplastic – Determination of Stress Relaxation in Compression at Ambient and at Elevated Temperatures, National Standards of People’s Republic of China (2008). GB/T 1685-2008. Rubber, Vulcanized or Thermoplastic – Determination of Stress Relaxation in Compression at Ambient and at Elevated Temperatures, National Standards of People’s Republic of China (2008).
25.
Zurück zum Zitat Y. Wu, D. Wang, W. Zhang, and J. Zhang, “Experimental research of thermal-oxidative aging on the mechanics of aero-NBR,” J. Test. Eval., 42, No. 3, 568–572 (2014).CrossRef Y. Wu, D. Wang, W. Zhang, and J. Zhang, “Experimental research of thermal-oxidative aging on the mechanics of aero-NBR,” J. Test. Eval., 42, No. 3, 568–572 (2014).CrossRef
Metadaten
Titel
Acidic-Thermal Ageing Effect on Compression Stress Relaxation of Silicone Rubber
verfasst von
G. Li
J. M. Gong
J. Z. Tan
D. S. Zhu
W. H. Jia
X. J. Lu
Publikationsdatum
14.11.2019
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 4/2019
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-019-00113-5

Weitere Artikel der Ausgabe 4/2019

Strength of Materials 4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.